STABILITY OF SEMILINEAR SYSTEMS IN
HILBERT SPACES

PIOTR GRABOWSKI
Academy of Mining and Metallurgy
30-059 Kraków,Mickiewicza 30,Poland

1. Abstract semilinear systems.

Several problems of mathematical physics, control and circuit theories lead to the following semilinear problem

\[\dot{x}(t) = Ax(t) + B F[x(t)] \] (1.1),

where \(x(t) \in X \) for every fixed \(t \geq 0, X \) is a real Hilbert space with scalar product \(\langle \cdot , \cdot \rangle_X \); \(A : (2(\mathbb{H}) \subset X) \rightarrow X \) is a linear operator, which is the generator of a linear \(C_0 \)-semigroup on \(X \); \(U \) is another real Hilbert space with scalar product \(\langle \cdot , \cdot \rangle_U \); \(B \in L(U,X) \).

It follows from the earlier results due to Segal [1],azy [2] and Ball [3] that for every initial condition \(x_0 \in X \) there exists a unique weak (mild) solution of (1.1) prolongable on its right maximal interval of existence \([0,t_{\text{max}}(x_0)] \), provided that \(P:X \rightarrow U \) is a locally Lipschitz function.

The aim of this paper is to give sufficient conditions for global (as well as global uniform) asymptotic stability of the equilibrium \(0 \in X \), independently of \(P \) from the prescribed subclass of locally Lipschitz functions from \(X \) into \(U \), vanishing at 0.

2. Main results.

The main results will be formulated as theorems and remarks.

Theorem 1.

Let \(\mathcal{M} \) be a class of functions such that:

(1) \(\mathcal{M} \subseteq \{ P: P \text{ is a locally Lipschitz mapping from } X \text{ into } U, P(0) = 0 \} \),

(ii) There exist operators \(Q \in L(U,X), p=^{\text{unique}} E L(U), \hat{L} \in L(U,X), E=^{\text{unique}} E L(U) \)

such that:
\(\forall F \in \mathcal{M} : QF \) is a gradient type operator,
\(\forall x \in X, \forall F \in \mathcal{M} : \)
\[
\left\langle x, -\Delta x \right\rangle_X + \left\langle x, L^F(x) \right\rangle_X + \left\langle F(x), L^x \right\rangle_U + \left\langle F(x), -K^F(x) \right\rangle_U \geq 0 \tag{2.1},
\]
\(\left(H_3 \right) \) \(\exists F \in \mathcal{M} \in L(X) \) and a real positive \(\varepsilon \) such that
\[
\left\langle Ax, v \right\rangle_X + \left\langle x, H^* Ax \right\rangle_X + \left\langle x, \Delta x \right\rangle_X + \left\langle x, H^* Bu \right\rangle_X + \frac{1}{2} \left\langle u, A^* Ax \right\rangle_U + \frac{1}{2} \left\langle u, B^* Bu \right\rangle_U + (2.2),
\]
\(\left(H_4 \right) \) If \(F \in \mathcal{M} = L(X, U) \cap \mathcal{M} \) then \(A + BF \) generates an exponential-stable semigroup,
\(\left(H_5 \right) \) \(\forall F \in \mathcal{M}, \forall x \in X, x \neq 0 \) \(\exists \alpha = \alpha(x, F) \in \mathcal{M} \)
\[
\left\langle \int_0^1 \left\langle x, \frac{d}{ds} F(sx) \right\rangle_X \right\rangle_X ds = 0,
\]
Then the equilibrium is globally asymptotically stable (GAS) for every \(F \in \mathcal{M} \).

Sketch of the proof.

Let us consider a continuously Fréchet-differentiable functional
\[
V(x) = \left\langle x, Hx \right\rangle_X + \int_0^x dy, F(y) \right\rangle_X - \epsilon \left[\left\| x \right\|^2_X + \left\| F(x) \right\|^2_U \right] \quad \forall x \in \mathcal{D}(\lambda), \forall F \in \mathcal{M} \tag{2.3}\]

The second term in (2.3) is the antiderivative of the gradient operator \(QF \). The assumptions \(\left(H_1 \right), \left(H_2 \right), \left(H_3 \right) \) allow us to prove the following inequalities:
\[
\left\langle Ax + BF(x), V'(x) \right\rangle_X \leq -\epsilon \left[\left\| x \right\|^2_X + \left\| F(x) \right\|^2_U \right] \quad \forall x \in \mathcal{D}(\lambda), \forall F \in \mathcal{M} \tag{2.4}
\]

where \(V'(x) \) denotes the gradient of \(V \) at \(x \), and
\[
\mathcal{V}[x(t, x_0)] - V(x) \leq -\varepsilon \int_0^t \left\{ \left\| x(t) \right\|^2_X + \left\| F[x(t)] \right\|^2_U \right\} dt \quad \forall x_0 \in X,
\]
\(\forall t \in [0, t_{\text{max}}], \forall F \in \mathcal{M} \)

If \(V \) is nonnegative on \(X \) for every \(F \in \mathcal{M} \) then we can prove that \(t_{\text{max}} = +\infty \) and
\[
\varepsilon \int_0^\infty \left\{ \left\| x(t) \right\|^2_X + \left\| F[x(t)] \right\|^2_U \right\} dt \leq V(x_0) \quad \forall x_0 \in X, \forall F \in \mathcal{M} \tag{2.6}
\]

The conditions assuring that \(V(x) \geq 0 \quad \forall x \in X, \forall F \in \mathcal{M} \) can be derived using the linear comparison system technique. The linear comparison