Fluorine-Containing Polymers.
I. Fluorinated Vinyl Polymers with Functional Groups, Condensation Polymers, and Styrene Polymers

By
WILLIAM POSTELNEK, Lester E. Coleman, and Alan M. Lovelace
Materials Laboratory, Wright Air Development Center, USAF
Air Research and Development Command, Wright-Patterson AFB, Ohio

Contents

I. Introduction 76
II. Vinyl Polymers with Functional Groups 76
 A. Acrylic Esters 76
 B. Acrylonitriles 84
 C. Acrylamides 87
 D. Vinyl Ethers 88
 E. Vinyl Esters 90
 F. Unsaturated Ketones 92
III. Condensation Polymers 93
 A. Polyethers 93
 B. Polyesters 95
 C. Polysiloxanes 99
IV. Homopolymers and Copolymers of Styrenes 104
V. Miscellaneous Polymers 108
Bibliographic 109

List of Tables

1. Fluorinated Acrylic Acids 79
2. Esters of Fluorinated Acrylic Acids 79
3. Fluorinated Esters of Acrylic Acid 80
4. Properties of Poly(1,1-dihydroperfluoroalkyl)acrylate Vulcanizates 81
5. Properties of Vulcanizes of Poly(fluroalkoxyalkyl)acrylates 82
6. Physical Properties of Some Polyfluoroacrylate Vulcanizates 83
7. Copolymerization Characteristics for 1,1-dihydroperfluorobutyl acrylate 83
8. Fluorine-containing Acrylonitriles 85
9. Fluoroacrylamides 87
10. Vinyl Esters-RfCO₂CH=CH₂ 91
11. Homopolymers of Vinyl Esters of Perfluorocarboxylic Acids-(–CH₂–CH–)ₙ 91
 CO₂Rf
12. Fluorine-containing Propenyl Ketones-RfCCH=CHCH₃ 92
13. Bulk Polymerizations of Perfluoroalkyl Propenyl Ketones with Vinyl Monomers 93
14. Some Fluorine-containing Epoxides 94
I. Introduction

Polytetrafluoroethylene (Teflon) and polychlorotrifluoroethylene (Kel-F) served for many applications during World War II, when urgent requirements for thermally stable, solvent resistant polymeric materials were uppermost. During the years following the war, a great deal of research and engineering effort was expended in the synthesis of various fluorine-containing monomers and subsequent polymerization into materials which would function in a variety of applications under conditions of high temperature and in the present of organic solvents, fuels and oils. Teflon and Kel-F are now materials of considerable commercial importance. More recent developments such as a new fluorocarbon elastomer, "Viton A" (E. I. du Pont de Nemours) and a new fluorine-containing silicone elastomer, "Silastic LS-53" (Dow Corning Corp.) also indicate great commercial utility.

It is the purpose of this paper to review the progress in the field of fluorine-containing polymers, excepting those derived from fluorocarbon olefins and dienes. Previously, very little information has been compiled on the subject of fluorine-containing vinyl polymers with functional groups, condensation polymers and homo-and copolymers of styrenes.

Monomer synthesis and polymerization data are presented for several classes of materials. Tables of monomers are listed with some physical properties, and physical, chemical and mechanical properties of polymers are indicated, wherever possible.

II. Vinyl Polymers with Functional Groups

A. Acrylic Esters

A considerable amount of work has been done on the fluorine-containing acrylates. For purposes of a systematic review it may be conveniently divided into two general areas; acrylates in which the fluorine is contained on the acid moiety of the ester, and the acrylates derived from fluorohalohols. The latter group has received a more detailed and systematic study and will be discussed later in this section.