By a graph G, is meant a set of n-points, called the set of vertices, $V(G)$; and a set $E(G)$, of lines, or edges, joining some pairs of vertices, so that no pair of vertices is joined by more than one edge, and no edge joins a vertex to itself. When a pair of vertices in a graph are joined by an edge they are called adjacent. The adjacency matrix of a graph G, denoted $A(G)$, is a square 0 - 1 matrix of order n whose rows and columns correspond to the vertices of G and for which $A_{ij} = 1$ if and only if vertex i and vertex j are adjacent. Thus, for each of the graphs considered, the associated adjacency matrix is symmetric with zeros on the diagonal. The eigenvalues of a graph are the eigenvalues of its adjacency matrix, and hence are real. For any graph G, the eigenvalues will be denoted $\lambda_1(G) \geq \lambda_2(G) \geq ...$ in descending order, and $\lambda_1(G) \leq \lambda_2(G) \leq ...$ in ascending order. The complement, \overline{G}, of the graph G is the graph described by $V(\overline{G}) = V(G)$, where two vertices in \overline{G} are adjacent if and only if these two vertices are not adjacent in G. The valence of a vertex v in a graph G is the number of edges for which that vertex is an end-point. Two graphs G and H are said to be "L away from each other" if there exists graphs \overline{G}, and \overline{H} such that $A(G) + A(\overline{G}) = A(H) + A(\overline{H})$ and every vertex of \overline{G} and \overline{H} has valence at most L. A sub-graph G' of G is the graph on the non-empty subset $V(G')$ of vertices of $V(G)$ where two vertices in G' are adjacent if and only if they were adjacent in the original graph G.

The following notation will be used:

$\begin{array}{c}
\bullet \\
\end{array}$ will be a complete graph on ℓ vertices, or clique, abbreviated K_ℓ, where every vertex is adjacent to every other vertex.
will be a graph formed by \(K_t \) and one more vertex adjacent to all the vertices of \(K_t \); that is, \(K_{t+1} \).

\(\tilde{K}_t \) will be the independent set of \(t \) vertices, abbreviated \(\tilde{K}_t \), in which no two vertices are adjacent.

\(\tilde{K}_2t \) will be a graph formed by two cliques on \(t \) vertices, where every vertex in each clique is adjacent to all other vertices, that is \(K_{2t} \).

\(\tilde{K}_t \) will be a graph formed by \(\tilde{K}_t \) and one more vertex adjacent to all the vertices of \(\tilde{K}_t \).

In short, a solid line joining graphs \(A \) and \(B \) forms a graph where every vertex in \(V(A) \) is adjacent to every vertex in \(V(B) \).

A. J. Hoffman proved the following

Theorem: Let \(Q \) be an infinite set of graphs, then the following statements about \(Q \) are equivalent:

1. There exists \(\lambda \) such that \(\lambda(G) \geq \lambda \), \(\forall G \in Q \). Where for any \(G \), \(\lambda(G) \) is the least eigenvalue of \(A(G) \).
2. There exists a positive integer \(t \) such that no \(G \in Q \) contains either \(\tilde{K}_t \), or \(\tilde{K}_2t \), as a sub-graph.
3. There exists a positive integer \(L \), such that for each \(G \in Q \) there exist graphs \(G \) and \(H \) with the following being true:
 3a) \(A(G) + A(C) = A(H) \).
 3b) Every vertex of \(C \) has valence at most \(L \); and \(H \) contains a family of cliques \(K_1, K_2, \ldots \) such that:
 3c) Each edge of \(H \) is in at least one \(K_i \),
 3d) Each vertex of \(H \) is in at most \(L \) of the cliques \(K_1, K_2, \ldots \)
 3e) \(|V(K_i) \cap V(K_j)| \leq L \), \(i \neq j \).

The main result of the present investigation is the following

Theorem 1: Let \(Q \) be an infinite set of graphs, then the following statements about \(Q \) are equivalent:

1. There exists a real number \(\lambda \) such that \(\lambda_2(G) \leq \lambda \) for every \(G \in Q \).
2. There exists a positive integer \(t \) such that for each \(G \in Q \) the