1. Introduction. Our object here is to examine the convolution device introduced in [1] and to discuss several applications it has found. We shall use throughout the standard notations of harmonic analysis as found in [2]. In particular when G is a locally compact abelian group \(A(G) \) and \(B(G) \) denote the Banach algebras of absolutely convergent Fourier series on \(G \) and Fourier-Stieltjes transforms on \(G \) respectively.

Let \(B \) be a Banach algebra realised as an algebra of functions on its maximal ideal space \(X \). Let \(Y \) be a closed subspace of \(X \) and let \(B|_Y \) denote the Banach algebra of restrictions with the quotient norm. In the case where \(B|_Y \) is isomorphic to \(C_0(Y) \) we say that \(Y \) is a set of interpolation for \(B \) and we are assured the existence of a constant \(a (0 < a < 1) \) such that

\[
a \|f\|_{B|_Y} \leq \|f\|_\infty \leq \|f\|_{B|_Y} \quad \forall f \in C_0(Y),
\]

by virtue of the closed graph theorem. A set \(Y \) satisfying this condition is called an \(I_\alpha \) set. Alternatively, by the Hahn-Banach theorem the condition has the dual formulation

\[
\|u\|_{(B|_Y)^*} \geq a \|u\|_M \quad \forall u \in M(Y).
\]

From this it may be seen that \(Y \) is an \(I_\alpha \) set if and only if all the totally disconnected subsets of \(Y \) are \(I_\alpha \) sets. If \(Y \) and \(Z \) are interpolation sets it is natural to ask whether \(Y \cup Z \) is. We may assume that \(Y \) and \(Z \) are disjoint and totally disconnected in the sense that it suffices to find \(a > 0 \) such that \(Y' \cup Z' \) is an \(I_\alpha \) set whenever \(Y' \) and \(Z' \) are disjoint totally disconnected subsets of \(Y \) and \(Z \) respectively. It is easy to see that \(Y \cup Z \) is an interpolation set if and only if there exists a separating function
$s \in \mathcal{B}$ such that

$$|s(y) - 1| \leq 1/3 \quad \forall y \in Y, \quad |s(z)| \leq 1/3 \quad \forall z \in Z.$$

In the case $Y \cap Z \neq \emptyset$ it will be necessary to construct s for each Y' and Z' with uniform control of norm. In the case where \mathcal{B} has no identity it suffices to find s in the multiplier algebra of \mathcal{B}.

2. The convolution device. Let K be a compact α set and let Ω be a set of continuous functions of unit modulus on K which form a group under pointwise multiplication. For all $\delta > 0$ there exist functions $f_\omega (\omega \in \Omega)$ in \mathcal{B} such that

1) $f_\omega (x) = \omega(x)$ $\quad \forall x \in K, \forall \omega \in \Omega.$

2) $||f_\omega||_B \leq a^{-1} (1+\delta) \quad \forall \omega \in \Omega.$

If we consider f as a function on $X \times \Omega$ and denote $f_x(\omega) = f_\omega(x)$ the most we can say about f_x is

3) $||f_x||_{C(\Omega)} \leq a^{-1} (1+\delta) \quad \forall x \in X,$

although for $x \in K$ we note that f_x is an algebraic character on Ω.

Restricting attention for the moment to the case where Ω is finite we consider the convolution

$$g(x_\omega) = \int f(x, \omega \lambda^{-1}) f(x, \lambda) \, d\eta(\lambda),$$

where η is the normalized translation invariant measure on Ω.

Clearly we have

1') $g_\omega (x) = \int (\omega \lambda^{-1})(x) \cdot \lambda(x) \, d\eta(\lambda) = \omega(x) \quad \forall x \in K, \forall \omega \in \Omega.$

2') $||g_\omega||_B \leq \sup_{\lambda \in \Omega} ||f_\lambda||_B^2 \leq a^{-2} \cdot (1+\delta)^2 \quad \forall \omega \in \Omega.$

For a fixed element $x \in X$ we have

3') $||g_x||_{A(\Omega)} = ||f_x \ast f_x||_{A(\Omega)} = ||f_x||_L^2(\Omega)$

$$\leq ||f_x||_\infty^2 \leq a^{-2} (1+\delta)^2.$$