1. Let \(\mu \) be a finite (non-zero) measure on a locally compact abelian group \(G \) with dual \(\Gamma = G^\wedge \), and suppose \(0 \) is isolated in the range of the Fourier-Stieltjes transform \(\hat{\mu} \), or more precisely,

\[
(1.1) \quad 0 \text{ is isolated in } |0| \cup \hat{\mu}(\Gamma).
\]

Then what can one say about \(\mu \)?

Using Cohen's approach to the idempotent problem (as simplified by Amemiya and Ito) we shall show (1.1) implies \(\mu \) has a non-zero component of a very nice sort: there is a compact subgroup \(H \) of \(G \) for which \(\mu_H \), the part of \(\mu \) carried by the cosets of \(H \), is the convolve of a (non-zero) idempotent and an invertible. Thus in particular \(\hat{\mu}_H \) (whose range is related to that of \(\hat{\mu} \) in general, cf. [8]) is supported by an element of the coset ring of \(\Gamma \). As an application, suppose \(\mu \) is a measure on \(T^1 \) whose discrete part is not the convolve of a (non-zero) idempotent and an invertible; if \(\{ I_n \} \) is a sequence of disjoint intervals in \(\mathbb{Z} \) with lengths tending to \(\infty \) on each of which \(\hat{\mu} \) doesn't vanish identically, then for every \(\varepsilon > 0 \), \(|\hat{\mu}| \) assumes a value in \((0, \varepsilon)\) on all but finitely many \(I_n \).

The result arose from another unsuccessful attempt to answer the question raised in [7]; the measures \(\mu \) for which \(\mu * L_1 \) is closed, which satisfy (1.1), may well have the form indicated above for \(\mu_H \), but the measures satisfying (1.1) itself need not be of that form. For example, if \(E \) is any Sidon set, Drury's construc-

*Work supported in part by the National Science Foundation.
tion [5] yields a measure \(\nu \) with \(\hat{\nu} = 1 \) on \(E \) and \(|\hat{\nu}| < \frac{1}{2} \) off \(E \), so \(\delta_o - \nu \) satisfies (1.1), as does \(\mu \ast (\delta_o - \nu) \) for any \(\mu \) satisfying (1.1), while \((\mu \ast (\delta_o - \nu))^\wedge \) vanishes exactly on \(E \cup \hat{\mu}^{-1}(0) \). Thus one can alter considerably the set on which the isolated value \(O \) is assumed (at least with \(G \) compact).

To state our result precisely, recall that for a closed subgroup \(H \) of \(G \), any \(\mu \in \mathcal{M}(G) \) can be uniquely decomposed (via exhaustion, as usual) as

\[
\mu = \mu_H + \mu',
\]

where \(\mu_H \) is carried by cosets mod \(H \) and \(\mu' \) vanishes on all Borel subsets of cosets mod \(H \) [10]. Our main result is then

Theorem 1.1. For any non-zero measure \(\mu \) on a l.c.a. group \(G \) satisfying (1.1) there is a compact subgroup \(H \) of \(G \) and characters \(\gamma_1, \ldots, \gamma_n \) in \(\Gamma \) for which

\[
\mu_H = \eta \ast \lambda, \quad \eta = \left(\sum_{1}^{n} \gamma_i \right) m_H, \quad \lambda \in \mathcal{M}(G)^{-1}
\]

(where \(m_H \) is the normalized Haar measure on \(H \) and \(\mathcal{M}(G)^{-1} \) denotes the invertible elements of \(\mathcal{M}(G) \)).

In what follows it will be convenient to use multiplicative notation for the group operation in \(\Gamma \), and to omit the usual conjugation in defining the Fourier-Stieltjes transform:

\(\hat{\mu}(\nu) = \int \nu \, d\mu = \mu(\nu) \). Finally \(G^d \) will denote the discrete version of \(G \).

2. We begin with a key lemma which is essentially proved (but not stated) in Cohen's work [2] and in the Amemiya-Ito paper [1], and which was no doubt known to those authors.

Lemma 2.1. Suppose \(X \) is a locally compact Hausdorff space,