II. Elimination of extensionality

In Takeuti [60], Gandy [8] and Schütte [47] the axiom of extensionality is eliminated by relativization. Here we develop this idea in a form specially suitable for functional languages. For \((\omega AC) \), \((C) \) and some special cases of \((AC) \) the elimination is carried out. This yields a \((E1) \)-elimination for \((AC)^O \)-resp. \((\omega AC) \)-analysis with the axioms \((AC)^{\alpha, \beta \text{-qf}} \) restricted to the types \((\alpha \equiv 0, \beta \text{ arbitrary}), (\alpha \equiv 0 \ldots 0, \beta \equiv 0) \).

We content us here with this result because by chapter I it covers classical analysis. - In the following chapters proof-theoretic reductions are given for \((AC)^O \)-resp. \((\omega AC) \)-analysis with extensionality restricted to \((ER) \)-qf. Thus we investigate \((AC)^O \), \((\omega AC) \)-analysis with the above restrictions on \((AC) \)-qf as well as \((AC)^O \), \((\omega AC) \)-analysis with extensionality restricted to \((ER) \)-qf.

Definition of Ex, \(\alpha \) by induction on types:

I. Ex°(r) =: \(\forall \), r°e° s ° e: r s

II. Ex (r) =: \(\forall x_1, \ldots, x_m \forall y_1, \ldots, y_m \exists x_1, \ldots, x_m r x_1 \ldots x_m r y_1 \ldots y_m \)

\(\alpha \in \mathbb{E} \) =: Ex (r) \(\vee \) Ex (s) \(\vee \exists x_1, \ldots, x_m \exists x_1, \ldots, x_m r x_1 \ldots x_m r y_1 \ldots y_m \)

for \(\alpha \equiv \alpha_1 \ldots \alpha_m \)

Definition of A:

1. A =: A for prime formulae A
2. \((A \rightarrow B) =: A \rightarrow B \)
3. \((\forall x A(x)) =: \forall x (Ex (x) \rightarrow A (x)) \)

For the defined connectives \(\forall, \rightarrow \) we have: \(\forall A =: \forall A, (A \rightarrow B) =: (A \rightarrow B) \).

Used are the abbreviations Ex(r) =: \(\forall \exists i_1 \exists r_i \), r s s =: \(i_1 \exists r_i \), where r s = (r 1 , ..., r m), s s = (s 1 , ..., s m).

The deductive framework for the following proofs is arithmetic \(\mathcal{A} \) (section I, II of the deduction frame). The considerations are also largely intuitionistically valid (without (Tnd)); deviations are marked.
At first some direct consequences of the above definitions.

(2.1) \(r^a_e s \rightarrow s^a_e r \)

(2.2) \(r^a_e s \land s^a_t \rightarrow r^a_t \)

(2.3) \(r^a_e r \leftrightarrow \text{Ex}^a(r), \quad r^a_e s \leftrightarrow \bigwedge_{x,y} (x \equiv y \rightarrow r^a x s y) \)

(2.4) \(r^a_s \land \text{Ex}^a(r) \rightarrow \text{Ex}^a(s) \)

(2.5) \(r^a_s \land \text{Ex}^a(r) \rightarrow r^a_e s \)

(2.6) \(\bigwedge x^a \text{Ex}^a(x), \quad \overline{a}_e \)-definition for all types is deductive equivalent to (E1), \(\overline{a}_e \)-definition for all types.

Proof:

\(\rightarrow: \) With \(\varphi_{u,y} \equiv r(u,y) \) according to (R1), where \(u,y \) are the variables of \(r \).

\(\leftarrow: \) Induction on types with iterated (E1)-application.

(2.7) \(\text{Ex}(\varphi) \land y \equiv y \rightarrow r(y)_e r(y) \) where \(\varphi \) are the functional constants, \(y \) the variables of \(r(y) \)

Proof: Induction on T-rank 1 of \(r \)

I. \(l=0 \): case 1: \(r(y) \equiv \varphi \) conclusion from premise with (2.3)

II. \(l \neq 0 \): \(r(y) \equiv s(y)(t(y)) \)

By induction hypothesis:

(1) \(\text{Ex}(\varphi) \land y \equiv y \rightarrow s(y)_e s(y) \)

(2) \(\text{Ex}(\varphi) \land y \equiv y \rightarrow t(y)_e t(y) \)

We have to show:

(\(\ast_1 \)) \(\text{Ex}(\varphi) \land y \equiv y \rightarrow \text{Ex}(s(y)(t(y))) \land \text{Ex}(s(y)(t(y))) \)

(\(\ast_2 \)) \(\text{Ex}(\varphi) \land y \equiv y \rightarrow \text{Ex}(s(y)(t(y))) \rightarrow s(y)(t(y)) \equiv s(y)(t(y)) \)

Ad (\(\ast_1 \)):

\(\text{Ex}(\varphi) \land y \equiv y \rightarrow \text{Ex}(s(y)) \land \text{Ex}(t(y)) \) \hspace{1cm} (1),(2), def.

\[\rightarrow s_1(y) \equiv y_1 \rightarrow s(y)(t(y)) \equiv s(y)(t(y)) \] \hspace{1cm} (2.3), def.

\[\rightarrow \text{Ex}(s(y)(t(y))) \]

Analogous: \(\text{Ex}(\varphi) \land y \equiv y \rightarrow \text{Ex}(s(y)(t(y))) \)