For some class of analytic flows on the 2-dimensional torus, we shall show that the time mean of a quantity \(f \in \mathcal{C}(k) \) converges to its phase mean \(\mathbb{E}(f) \) with the speed \(1/n \) in the sense of both G. Birkhoff and J. von Neumann.

We consider a differential equation on the 2-dimensional torus \(\mathbb{M}_2 \):
\[
\frac{dx}{dt} = F(x,y) \quad \frac{dy}{dt} = G(x,y) \quad (\text{mod 1}),
\]
where \(F(x,y) \) and \(G(x,y) \) are analytic functions on \(\mathbb{M}_2 \) such that
\[
F^2(x,y) + G^2(x,y) \neq 0.
\]
Let \(T_t \) be the transformation on \(\mathbb{M}_2 \) defined by
\[
T_t(x(0), y(0)) = (x(t), y(t)),
\]
where \((x(t), y(t))\) is a solution of the above equation with an initial condition \((x(0), y(0))\), and let \(\mathcal{B} \) be the topological Borel field in \(\mathbb{M}_2 \). We assume there exists an invariant probability measure \(P \) with an analytic density \(p(x,y) \) with respect to Lebesgue measure \(dx dy \).

Denote the rotation number of \(\mathcal{J} \) by \(\gamma : \gamma = \int_{\mathbb{M}_2} F(\omega) dP(\omega) / \int_{\mathbb{M}_2} G(\omega) dP(\omega) \).

We shall prove the following theorem:

Theorem. Let \(\mathcal{J} = (\mathbb{M}_2, \mathcal{B}, P, T_t) \) be the flow defined above, and assume that the rotation number \(\gamma \) of \(\mathcal{J} \) is irrational and moreover there exist positive numbers \(L \) and \(H \) such that
\[
|m + n\gamma| \geq L/\ln^H n \quad \text{for any integers } m \text{ and } n.
\]
Then, if \(k-H > 1 \),

\[
\left| \frac{1}{S} \int_{0}^{S} f(T_t(x,y)) dt - E(f) \right| = O(\frac{1}{S}) \quad \text{a.e. (x,y) } \in M_2
\]

holds for any \(C^{(k)} \)-function \(f \), and moreover if \(k-H > 1/2 \)

\[
\left\| \frac{1}{S} \int_{0}^{S} f(T_t(x,y)) dt - E(f) \right\| = O(\frac{1}{S}),
\]

holds for any \(C^{(k)} \)-function \(f \), where \(\| \cdot \| \) means the \(L^2 \)-norm.

Proof. Let \(\mathcal{B} = (M_2, \mathcal{B}, dxdy, S_\mathcal{B}) \) be a flow defined by

\[
\frac{dx}{dt} = 1 \quad \frac{dy}{dt} = \gamma.
\]

It is known [1] and [2] that the flow \(\mathcal{J} \) is isomorphic to the flow \(\mathcal{B} \) by an analytic transformation \(f \) on \(M_2 \):

\[
\mathcal{J} f(x,y) = S_t(x,y)
\]

\[
dP(f(x,y)) = dxdy.
\]

We consider first the flow \(\mathcal{B} \). The flow \(\mathcal{B} \) has the discrete spectrum \(\mu_{n,m} = n + \gamma m \) (\(n \) and \(m \) run over all integers) and eigenfunctions \(\chi_{n,m}(x,y) = \exp i(nx+my): \)

\[
\chi_{n,m}(S_t(x,y)) = \chi_{n,m}(x,t,y+t\gamma) = e^{it\mu_{n,m}} \chi_{n,m}(x,y).
\]

Since \(\gamma \) is irrational, \(\mathcal{B} \) is ergodic and hence there exists an ergodic automorphism \(S_t \). Putting \(T = S_t \), and \(F(\omega) = \int_{0}^{t} f(S_t^t \omega) dt \), we get

\[
E(F) = \int_{M_2} f(S_t^t \omega) dP(\omega) = \int_{0}^{t} f(S_t^t \omega) dP(\omega) dt = t E(f)
\]

and

\[
\frac{1}{S} \int_{0}^{S} f(S_t^t \omega) dt = \frac{1}{S} \sum_{0}^{S} f(T^j \omega) + \frac{1}{S} \int_{0}^{S} f(S_t^t \omega) dt,
\]

where \(\mathcal{L} \) is the integral part of \(S_t \). We shall show the last term of the right side of the above equation is bounded in \(S \). If it is not bounded, we can find sequences \(A_n \uparrow \infty \) and \(S_n \uparrow \infty \) such that

\[
A_n < \left| \frac{1}{S_n} \int_{S_n} f(S_t^t \omega) dt \right| = \left| \int_{0}^{S_n} f(S_t^t \omega) dt \right|
\]

and hence