ON THE LINEAR INDEPENDENCE OF SETS OF 2^q COLUMNS OF CERTAIN $(1, -1)$ MATRICES
WITH A GROUP STRUCTURE, AND ITS CONNECTION WITH FINITE GEOMETRIES

J. N. Srivastava

Department of Statistics
Colorado State University, Fort Collins, CO 80521 U.S.A.

ABSTRACT

Consider a set of m symbols (indeterminates) F_1, \ldots, F_m, and let G be the group of order 2^m generated by multiplying these symbols two, or three, or more at a time, where the multiplication is assumed commutative, and where $F_j^2 = \mu$ (the identity element of G) for all j. The elements of G can be written, in order, as $(\mu; F_1, \ldots, F_m; F_1F_2, F_1F_3, \ldots, F_{m-1}F_m; F_1F_2F_3, \ldots; F_1F_2 \ldots F_m)$. Consider a matrix $A(N \times 2^m)$ over the real field whose columns correspond in order to the elements of the group G. The elements of A are 1 and (-1), and are obtained as follows. The elements of A in the column corresponding to μ are all equal to 1. The next m columns of A, filled in arbitrarily, constitute an $(N \times m)$ submatrix, say A^\star. Finally, for all f ($1 < f < m$), and all i_1, \ldots, i_f (with $1 < i_1 < i_2 < \ldots < i_f < m$), the column of A corresponding to $F_{i_1}F_{i_2} \ldots F_{i_f}$ is obtained by taking the Schur product of the columns of A (or A^\star) corresponding to $F_{i_1}, F_{i_2}, \ldots, F_{i_f}$. The matrix A (over the real field) is said to have the property P_t if and only if every set of t columns of A is linearly independent. In this paper, for all positive integers q, we obtain necessary conditions on A^\star such that every $(N \times 2^q)$ submatrix A^{**} in A has rank 2^q. A non-statistical introduction together with an illustrative example is provided.

INTRODUCTION

We first execute the remark made in the last sentence above.

This subject is a part of the theory of "the design of factorial experiments of the 2^m type." Here, we are concerned with (statistically) planning a scientific experiment in which we are studying the effect of m factors (or variables) each at two levels, on some characteristic of the experimental material. For example, we may have an agricultural experiment with 4 ($=m$) factors, these being the nitrogen, phosphorus, potassium, and organic fertilizers, and the characteristic under study may be the yield of wheat. The two levels of each fertilizer (indicated by 1 and (-1) respectively) may indicate the presence and absence respectively of the fertilizer. Each row of A^\star then indicates a particular treatment-combination, i.e. a combination of levels of these factors. The elements of G can be interpreted as the names of certain parameters describing the effect of the various fertilizers on the yield of wheat. Thus, μ denotes the over-all average of the effects of the various treatment-combinations, F_i the main effect of the ith factor, F_iF_j, the interaction between
the ith and jth factors, $F_{ij}F_{jk}$, the three-factor interaction between the ith, jth, and kth factors, and so on. The effect of any particular treatment-combination (which corresponds to a row of A^*) is a linear function of the above parameters, the coefficients being the corresponding elements in the row of A containing this particular row of A^*.

For any positive integer t, the significance of A having the property P_{2t} is as follows. Suppose no random fluctuations are present, and at most t out of the 2^m parameters are non-zero. Also, assume that an experiment is done using the N treatment-combinations represented by the N rows of A^*. Then a necessary and sufficient condition that the value of the non-zero parameters can be determined precisely is that A have property P_{2t}. Thus, this problem has a fundamental importance in the design of experiments, and is deeply connected with information and coding theory.

Definition 1.1 (a) Let T $(N \times m)$ be the $(0,1)$ matrix obtained from A^* by replacing (-1) by 0. Then T is called the design. (b) Let \overline{T} be the matrix obtained from T by interchanging 0 and 1; we shall consider \overline{T} over $GF(2)$.

To help in clarifying ideas, we now present an example of the matrices T, A, etc. Thus, the matrix T at (1.1) below represents a design for a 2^4 factorial experiment, the rows of T representing combinations of levels of the four factors. The matrix A corresponding to T is presented at (1.2). For convenience, the elements of the group G corresponding to each column of A is indicated at the top of the column:

\[
T = \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0
\end{bmatrix}, \quad \overline{T} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{bmatrix}, \quad A^* = \begin{bmatrix}
+ & + & + & + \\
+ & - & - & - \\
+ & + & - & - \\
+ & - & + & + \\
+ & + & + & - \\
+ & - & - & + \\
+ & + & - & - \\
+ & - & + & +
\end{bmatrix}
\]

\[
A = \begin{bmatrix}
\mu & F_1 & F_2 & F_3 & F_4 & F_{12} & F_{13} & F_{14} & F_{23} & F_{24} & F_{34} & F_{123} & F_{124} & F_{134} & F_{234} & F_{1234}
\end{bmatrix}
\]

where, in the above, $(+)$ and $(-)$ stand respectively for $(+1)$ and (-1). Notice that