A new algorithm is presented for the related problems of canonically labelling a graph or digraph and of finding its automorphism group. The automorphism group is found in the form of a set of less than \(n \) generators, where \(n \) is the number of vertices. An implementation is reported which is sufficiently conserving of time and space for it to be useful for graphs with over a thousand vertices.

1. INTRODUCTION

Let \(V \) be the finite set \(\{1, 2, \ldots, n\} \). Define \(\mathcal{G}(V) \) to be the set of all (labelled) graphs with vertex set \(V \). Let \(S_n \) be the symmetric group acting on \(V \). For \(G \in \mathcal{G}(V) \) and \(g \in S_n \), define \(G^g \in \mathcal{G}(V) \) to be the graph in which vertices \(v^g \) and \(w^g \) are adjacent exactly when \(v \) and \(w \) are adjacent in \(G \). The automorphism group of \(G \), \(\text{Aut}(G) \), is the group \(\{ g \in S_n | G^g = G \} \).

The canonical label problem is to find a map \(\text{canon}: \mathcal{G}(V) \to \mathcal{G}(V) \) such that for \(G \in \mathcal{G}(V) \) and \(g \in S_n \),

1. \(\text{canon}(G) \) is isomorphic to \(G \), and
2. \(\text{canon}(G^g) = \text{canon}(G) \).

Note that there may be many functions \(\text{canon} \) satisfying (1) and (2).

If \(G, H \in \mathcal{G}(V) \), we see that \(G \) and \(H \) are isomorphic if and only if \(\text{canon}(G) = \text{canon}(H) \).

In this paper we present a new algorithm for computing \(\text{canon}(G) \) which will also find a set of fewer than \(n \) automorphisms which generate \(\text{Aut}(G) \). With only minor modifications which we will indicate, the algorithm is equally applicable to digraphs. Undefined graph theoretic or group theoretic concepts can be found in \([1]\) or \([7]\) respectively.

2. EQUITABLE PARTITIONS

Let \(V = \{1, 2, \ldots, n\} \). A partition of \(V \) is a collection \(\pi \) of disjoint non-empty subsets of \(V \) whose union is \(V \). The elements of \(\pi \) are called its cells. An ordered partition of \(V \) is a sequence \((C_1, C_2, \ldots, C_k) \) for which \(\{C_1, C_2, \ldots, C_k\} \) is a partition. The sets of all partitions of \(V \), and of all ordered partitions of \(V \) will be denoted by \(\Pi(V) \) and \(\Pi(V) \) respectively.
Define $\Pi^*(V) = \Pi(V) \cup \Pi(V)$. Let $\pi_1, \pi_2 \in \Pi^*(V)$. We write $\pi_1 \preceq \pi_2$ (π_1 is finer than π_2, π_2 is coarser than π_1) if every cell of π_1 is contained in some cell of π_2. If both $\pi_1 \preceq \pi_2$ and $\pi_2 \preceq \pi_1$, we write $\pi_1 \equiv \pi_2$. If $\pi \in \Pi^*(V)$, the number of cells of π is denoted by $|\pi|$. π is called discrete if $|\pi| = n$.

Let $\pi \in \Pi^*(V)$ and $g \in S_n$. Then $\pi^g \in \Pi^*(V)$ is formed by replacing each cell $C \in \pi$ by C^g. If $\pi = \pi^g$, g is said to fix π. Denote by $\pi \vee g$ the finest partition of V which is coarser than π but fixed by g. The existence of $\pi \vee g$ follows from the fact that $(\Pi(V), \preceq)$ is a lattice [3].

Choose a fixed $G \in \mathcal{G}(V)$. If $W \subseteq V$ and $v \in V$, the number of vertices in W which are adjacent to v will be denoted by $d(v, W)$. Let $\pi \in \Pi^*(V)$. π is said to be equitable (for G) if for any $C_1, C_2 \in \pi$ and $v_1, v_2 \in C_1$ we have $d(v_1, C_2) = d(v_2, C_2)$. For an arbitrary π, the coarsest equitable partition which is finer than π will be denoted by $\xi(\pi)$. Similarly, $\theta(\pi)$ denotes the partition whose cells are the orbits of the subgroup of Aut(G) which fixes π. The proof of the following lemma can be found in [3].

LEMMA 1. Let $\pi \in \Pi(V)$. Then

(i) $\theta(\pi) \leq \xi(\pi)$,

(ii) $\theta(\pi)$ is equitable, and

(iii) if π is equitable, and $n - |\pi| \leq 5$, the smallest cells of π of size ≥ 2 are cells of $\theta(\pi)$. (Not true if G is a digraph.)

Corneil proved in [2] that for any π, $\theta(\pi) = \xi(\pi)$ if G is a tree. This can be generalised to uni-cyclic graphs and many others. See [3] for further details.

Algorithms for computing $\xi(\pi)$ have been used many times in graph isomorphism programs ([2], [5], [6]). For our own purposes, however, the following system appears to be more efficient. Let $\pi \in \Pi(V)$ and let a be a subset of π.

ALGORITHM 1: Compute $\overline{\pi} = \mathcal{A}(G, \pi, a)$

1. $\overline{\pi} \leftarrow \pi$

2. If $a = \emptyset$ or $\overline{\pi}$ is discrete, stop.

 Choose any non-null subset β of a.

 $a \leftarrow a \setminus \beta$, $i \leftarrow 1$

 (Suppose $\overline{\pi} = \{C_1, C_2, \ldots, C_k\}$ and $\beta = \{W_1, W_2, \ldots, W_r\}$.)

3. Partition C_1 into subsets D_1, D_2, \ldots, D_s according to the vectors $d(v, W_1), d(v, W_2), \ldots, d(v, W_r)$ for $v \in C_1$.

 $\overline{\pi} \leftarrow \overline{\pi} \cup \{D_1, D_2, \ldots, D_s\} \setminus \{C_1\}$