Let $A = (A,F)$ be an algebra. F is allowed to have both finitary and infinitary operations. A subset $T \subseteq A$ is called a stock or trunk of A if for each $f \in F$ of arity α, $f(a_i : i < \alpha) \in T$ whenever $a_i \in T$ for at least one $i < \alpha$. The empty set is a stock and if F contains no nullary operations, then every stock is a subalgebra of A. We say that $z \in A$ is a distinguished element of A if \{z\} is a stock of A. If F contains an operation with arity at least two, then the distinguished element is unique, if it exists.

PROPOSITION 1. The set of all stocks of A forms a complete sub-lattice of the Boolean algebra of all subsets of A.

Proof. Trivial.

We associate with each stock T of A a congruence $C(T)$ defined by $x C(T) y$ if and only if $x = y$ or $x,y \in T$. It is easy to see that $C(T)$ is a congruence, which we call the Rees congruence generated by T [8]. The only quotient algebras that we consider in this paper are of the form $A/C(T)$. We write A/T for $A/C(T)$ which can be identified with $(A - T) \cup \{z\}$ where z is the distinguished element of A/T.

The next two propositions are versions of the second and third isomorphism theorems. Their proofs are omitted.

PROPOSITION 2. Let T be a stock of A and $S = (S,F)$ a subalgebra then

i) $T = (T \cup S,F)$ is a subalgebra of A,

ii) T is a stock of T and $T \cap S$ is a stock of S,

iii) $T/T \cong S/(T \cap S)$.

PROPOSITION 3. Let K be a stock of A and let $h : A \to A/K$ be the natural isomorphism. Then h induces a one-to-one correspon-
between the lattice of all stocks of A which contain K onto
the lattice of all non-empty stocks of A/K. If $P \supseteq K$ is a stock,
then $(A/K)/(P/K) \cong A/P$.

For $x \in A$ let $J(x)$ be the stock generated by x. Define an
equivalence relation J by $x J y$ if $J(x) = J(y)$. For $r \in A$
define $J_r = \{ x \in A : J(x) = J(r) \}$ and set $I(r) = J(r) - J_r$ (note
$J_r \subseteq J(r)$).

Proposition 4. (i) $I(r) = \{ x \in A : J(x) \not\subseteq J(r) \}$ (ii) $I(r)$
is a stock of A maximal in $J(r)$.

Proof. The proof of (i) is easy. To prove (ii) we need to show
$I(r)$ is a stock. If it were not there would be a $t \in I(r)$ and
$f \in F$ with $z = f(a_i : i < a) \notin I(r)$ for some $\{ a_i : i < a \}$ such
that $t = a_i$ for some i. Since $t \in J(r)$, $z \in J(r) - I(r)$. Hence
$J(z) = J(r)$, so $t \in J(z)$. Clearly $z \in J(t)$. Therefore $J(t) =
J(z) = J(r)$, contradicting $t \in I(r)$.

Let B be a subset of A. We call $J(x)/I(x)$, $x \in B$ a
principal factor of A over B. Let R and P be stocks of A
with $P \nsubseteq R$. We call a finite strictly decreasing chain

$$
(1) \quad R = S_0 \supseteq S_1 \supseteq \cdots \supseteq S_k = P
$$

of stocks of A a G-principal series of A from R till P if each
S_i is maximal in S_{i-1}. The algebras S_{i-1}/S_i are called the
factors or quotients of the series. If

$$
(2) \quad R = T_0 \supseteq T_1 \supseteq \cdots \supseteq T_n = P
$$

is another G-principal series from R till P we say that (1) and
(2) are isomorphic if $k = n$ and there is a permutation π on
$\{0,1, \ldots, k-1\}$ so that $S_i/S_{i+1} \cong T_{\pi(i)}/T_{\pi(i)+1}$.

Theorem 1. Let $A = (A,F)$ be any algebra. Let (R,P) be a
pair of stocks of A which admits a G-principal series (1). The
factors of (1) are isomorphic (taken in a certain order) to the
principal quotients over $R-P$. In particular, any two G-principal
series from R till P are isomorphic.

Proof. We begin with any factor of (1), S_i/S_{i+1},
$i \in \{0,1, \ldots, k-1\}$. Let $m \in S_i - S_{i+1}$, then $J(m) \cup S_{i+1}$ is a
trunk of A by proposition (1), so that m belongs to it and it