Let R, S be rings with unit element. By R- or S-modules we shall always mean unital modules. Let $U = _R \S$ be an R-S-bimodule. Then for every left R-module X a canonical homomorphism

$$\varphi(X): U \otimes_S \text{Hom}_R(U, X) \longrightarrow X$$

is defined by $\varphi(X)(u \otimes f) = f(u)$ for $u \in U, f \in \text{Hom}_R(U, X)$. Similarly, for every left S-module Y a canonical homomorphism

$$\sigma(Y): Y \longrightarrow S \text{Hom}_R(U, U \otimes_S Y)$$

is defined by $(\sigma(Y)y)u = u \otimes y$ for $y \in Y, u \in U$. The natural transformations φ and σ are fundamental tools in the categorical theory of modules. Indeed, the theory of Morita equivalence is precisely for the case where both φ and σ are isomorphisms. Generalizing the Morita theory, Fuller [1] considered the case where $\sigma(Y)$ is an isomorphism for all left S-modules Y and $\varphi(X)$ is an isomorphism for all X in a certain class of left R-modules, and succeeded in obtaining a theorem characterizing the structure of U which corresponds to this case. On the other hand, Sato [5] has recently worked out determining the type of U for which $\sigma(Y)$ is an isomorphism for all left S-modules Y, and as an application given an improvement and sharpening of Fuller's theorem. In the present note, by observing φ rather than σ, we attempt to get another approach, which, combined with Sato's results, yields a further refinement and clarification of Fuller's characterization.
Let \overline{X} denote, for each left R-module X, the image of $\rho(X)$ i.e. the sum of all homomorphic images of RU in X. Then clearly $\text{Hom}_R(U, \overline{X}) = \text{Hom}_R(U, X)$, and this implies that $\rho(\overline{X})$ is an isomorphism if and only if $\rho(X)$ is a monomorphism. Let $\text{Gen}_R(U)$ be the class of those left R-modules X for which $\overline{X} = X$. It follows then that $\rho(X)$ is an isomorphism for all X in $\text{Gen}_R(U)$ if and only if $\rho(X)$ is a monomorphism for all left R-modules X. Now that X is in $\text{Gen}_R(U)$ means that X is a sum of homomorphic images of RU, and this is also equivalent to the condition that X is a homomorphic image of a direct sum of copies of RU, that is, there exist an index set A and an epimorphism $RU^A \rightarrow RX$, where U^A means the A-times direct sum of U. Generally, each homomorphism $h: RU^A \rightarrow RX$ can be identified with a family $\{h_\alpha\}_{\alpha \in A}$ of homomorphisms $h_\alpha: RU \rightarrowRX$ such that $h(\{u_\alpha\}) = \sum h_\alpha(u_\alpha)$ for every $\{u_\alpha\} \in U^A$.

(Here, $u_\alpha = 0$ for all but a finite number of α, while h_α's need not satisfy such a condition.)

Lemma 1. Let $h = \{h_\alpha\}$ be an epimorphism $RU^A \rightarrow RX$ and let $\rho(X)$ be a monomorphism. Then $U \otimes \text{Hom}_R(U, X) = U \otimes \sum \text{Sh}_\alpha$.

Proof. Let t be any element of $U \otimes \text{Hom}_R(U, X)$ and let $x \in X$ be the image of t by $\rho(X)$. Since $h: RU^A \rightarrow RX$ is an epimorphism, there exists $\{u_\alpha\} \in U^A$ such that $x = h(\{u_\alpha\}) = \sum h_\alpha(u_\alpha)$. Consider now $\sum u_\alpha \otimes h_\alpha \in U \otimes \text{Hom}_R(U, X)$. Its image by $\rho(X)$ is also $\sum h_\alpha(u_\alpha) = x$. Since however $\rho(X)$ is a monomorphism, it follows $t = \sum u_\alpha \otimes h_\alpha$, which shows that $U \otimes \text{Hom}_R(U, X) = U \otimes \sum \text{Sh}_\alpha$.