INJECTIVE QUOTIENT RINGS OF COMMUTATIVE RINGS

Carl Faith

Rutgers, The State University
New Brunswick, N. J. 08903
and
The Institute for Advanced Study
Princeton, N. J. 08540

INTRODUCTION

In the broadest sense, this is a study of commutative rings which satisfy the (finitely) pseudo-Frobenius (or (F)PF) condition: All (finitely generated) faithful modules generate the category mod-\(R \) of all \(R \)-modules. These rings include: Prüfer rings, almost maximal valuation rings, self-injective rings, e.g., quasi-Frobenius (QF) and pseudo-Frobenius (PF) rings, and finite products of these. (In fact, any product of commutative FPF rings is FPF [34]; hence, any product of commutative PF rings is FPF (cf. §9).)

If \(R \) is FPF, so is its (classical) ring of quotients \(Q_{cl}(R) \) and its maximal quotient ring \(Q_{max}(R) \). All known FPF rings are (classically) quotient-injective in the sense that \(Q_{cl} \) is injective.\(^2\) We conjecture that all FPF rings are quotient-injective, and prove this in the three cases: (1) local rings (Proposition 7 and Theorem 9B); (2) Noetherian rings (Theorem 11; Endo's Theorem \[25\]); (3) reduced rings (Proposition 3B and Theorem 4). Moreover, any FPF commutative ring \(R \) splits, \(R = R_1 \times R_2 \), where \(R_1 \) is semihereditary, and \(R_2 \) has essential nilradical. (If \(R \) is semilocal or Noetherian, then \(R_2 \) is injective.) Thus any reduced FPF ring has regular injective \(Q_{cl} \), and conversely any quotient-injective semihereditary ring is FPF (Theorem 4).

A ring is pre-FPF iff all (finitely generated) faithful ideals are generators, and we

\(^1\) This paper was written while I was a visitor at The Institute for Advanced Study. I wish to thank the faculty for granting me this inestimable privilege. It is also a pleasure to thank Ms. E. Laurent for her many kindnesses and much help.

\(^2\) In general, \(Q_{cl} \) is injective as an \(R \)-module iff it is a self-injective ring [21].
show this occurs iff all such ideals are actually projective. This is proved via a partial converse of Azumaya's theorem (corollary to Proposition 5A) stating that all faithful finitely generated projectives are generators. The partial converse states that all "rank-1" generators are finitely generated projective. (See Theorem 1C and Propositions 1D and 1F.) This enables us to prove that any FPF ring R has flat epic Q_{max} (Theorem 1E). A ring R is right Kasch if every simple right module embeds in R; equivalently, maximal right ideals have nonzero left annihilators. Clearly, any commutative Kasch ring is pre-PF. Moreover, every pre-PF commutative ring has Kasch Q_{max} (Proposition 1G).

Noetherian quotient-injective rings have been characterized by Bass [21]:

The zero ideal is unmixed and all of its primary components are irreducible. In the general case, while the problem of characterizing quotient-injective rings is still open, Vámos [19] determined all fractionally self-injective (= FSI) rings, that is, rings such that every factor ring is quotient-injective (see Theorem 19), and related them to the structure of σ-cyclic rings, that is, rings over which every finitely generated module is a direct sum of cyclics. It follows easily from the structure theory of Brandal [27], Vámos [19], and the Wiegands [20] that every σ-cyclic ring is quotient-injective. (See Theorem 19.)

The condition that every factor ring of R is FPF is called CFPF, and is related to Vámos' condition FSI. The truth of our conjecture would imply that R CFPF \Rightarrow FSI. A local ring R is CFPF iff R is an almost maximal valuation ring (Theorem 5B). Thus CFPF \iff FSI for a local ring R by a theorem of Vámos [19]. (These results imply that not every valuation ring (VR) is quotient-injective, since otherwise every factor ring of a VR would be quotient-injective, hence FSI whence almost maximal.) Also CFPF \Rightarrow FSI for Noetherian R (Corollary 12C).

It is shown that a local ring R is FPF iff Q_{cf} is injective and the zero divisors P is a "waist" of R such that R/P is a valuation ring. (This general-

3 Another characterization: The dual of any finitely generated module is reflexive [21].