ON AN ABSTRACT VOLterra EQUATION

SERGIU AIZICOVICI
Institute of Mathematics
University of Iaşi
6600 Iaşi, Romania

1. INTRODUCTION

In this note we study the existence of solutions to a class of Volterra integrodifferential equations of the form

\[u'(t) + \int_0^t a(t-s)g(u(s))ds \geq f(t), \quad 0 < t < T. \]

Here \(T \in (0, \infty) \) is arbitrary, \(u \) and \(f \) take values in a real infinite dimensional Hilbert space \(H \), \(a \) stands for a scalar convolution kernel, while \(g \) denotes a nonlinear monotone (possibly multivalued) operator acting in \(H \). (See \cite{3} and \cite{5} for background material on monotone operators).

To realize the difficulty of this problem, let us remark that in the case when \(a=1 \), \((1.1)\) formally reduces (by differentiation) to a nonlinear hyperbolic equation.

When approaching the existence of solutions to Eq.\((1.1)\), one has to choose between two opposite ways. The first way (used by Londen \cite{7},\cite{8}) rests upon hard conditions on the convolution kernel, excluding the case \(a=1 \) and therefore an application to hyperbolic equations. The second alternative (cf.\cite{1},\cite{2}) does allow a broad class of kernels (including \(a=1 \)), at the expense of strong restrictions on the admissible nonlinearities \(g \). We are going to further illustrate this second way.

2. MAIN RESULT

Consider a real reflexive, separable Banach space \(V \), such that \(V \subset H \), with dense and continuous inclusion. We have

\[V \subset H \subset V', \]

where \(V' \) is the dual of \(V \). The pairing between \(v_1 \in V' \) and \(v_2 \in V \) will be denoted by \((v_1, v_2) \); it coincides with their inner product in \(H \), whenever \(v_1 \in H \). We use the notations \(||.||_V \) and \(||.||_H \) to indicate the norms in \(H \) and \(V \), respectively. Assume that

\[(2.1) \quad \text{The injection } V \subset H \text{ is compact.} \]

Let \(A \) be a cyclically maximal monotone operator in \(V \times V' \). Hence,
there exists a convex, lower semicontinuous (l.s.c.) and proper function \(\varphi : V \rightarrow (-\infty, +\infty] \), such that

\[
(2.2) \quad A = \partial \varphi, \quad (\partial = \text{subdifferential}).
\]

We suppose that

1. \(A \) is everywhere defined (\(D(A) = V \)), single-valued and maps bounded subsets of \(V \) into bounded subsets of \(V' \),

2. \(A \) is weakly continuous, i.e., for any sequence \(\{u_n\} \subset V \), such that \(u_n \rightharpoonup u \) weakly in \(V \), we have \(Au_n \rightharpoonup Au \) weakly-star in \(V' \),

3. \(\lim_{\|u\| \rightarrow \infty} \varphi(u) = +\infty \).

Remark 2.1. (i) Conditions (2.2)-(2.5) are clearly satisfied by each linear positive, symmetric and coercive operator \(A : V \rightarrow V' \).

(ii) Let \(\Omega \) be a bounded subset of \(\mathbb{R}^n (n \geq 3) \), with smooth boundary. If \(H = L^2(\Omega), V = H^1_0(\Omega) \),

then it is immediate that (2.1)-(2.5) hold, provided that the (nonlinear) operator \(A \) be given by

\[
Au = -\Delta u + M u, \quad u \in V,
\]

where \(M : L^p(\Omega) \rightarrow L^q(\Omega), 2 \leq p \leq 2n/(n-2), 1/p + 1/q = 1, \)

is of the form

\[
(Mu)(x) = \beta(u(x)), \quad x \in \Omega, \quad u \in L^p(\Omega),
\]

with \(\beta : \mathbb{R} \rightarrow \mathbb{R} \) satisfying

\[
\beta \in C(-\infty, +\infty), \beta \text{ monotone}, \beta(0) = 0,
\]

\[
|\beta(r)| \leq c(|r|^{p-1} + 1), \quad c > 0, \quad r \in \mathbb{R}.
\]

Consider next a convex, l.s.c., proper function \(\psi : H \rightarrow (-\infty, +\infty] \) and define the maximal monotone operator \(B \) in \(H \) by

\[
(2.6) \quad B = \partial \psi
\]

Denote by \(D(\psi) \) the effective domain of \(\psi \) and suppose that

\[
(2.7) \quad \forall \psi \cap \text{int.} D(\psi) \neq \emptyset, \quad (\text{int.} = \text{interior}).
\]

Remark 2.2. It is obvious that (2.7) is fulfilled in the case in which \(\psi \) is the indicator function of a closed convex subset \(K \subset H \), with

\[
\forall \cap \text{int.} K \neq \emptyset.
\]

Let \(a : [0,T] \rightarrow \mathbb{R} \) satisfy (cf. [6, Cond. (a)])