PART I. ANALYTICAL AND PROBABILISTIC BASIS

CHAPTER II. BASIC OPERATOR THEORY

We will deal with functions of a real (or complex) variable x and of $D = \frac{d}{dx}$. Thinking of a function $f(x)$ as a multiplication operator, we "recover" the function as $f(x)1$. We will denote, then, for an operator B, the operator composition by $B^0 f(x)$; and the application of B to $f(x)$ by $Bf(x)$, that is, $Bf(x) = B^0 f(x)1$.

The functional calculus we use will be based on the exponential. We have the following:

Proposition 1: Knowledge of e^{AB} is equivalent to knowledge of $f(B)$ for the following families (f):

1. Polynomials
2. Analytic functions (around $0 \in \mathbb{C}$)
3. Schwartz space functions and tempered distributions.

Proof: For (1) calculate $B^n = (\frac{d}{dx})^n |_0 e^{AB}$. (2) follows by power series expansion. From (1) or (2) we recover e^{AB} by power series.

Recall Schwartz space $S = \{ f : f \in C^\infty$ and $\int |x|^m f(x) = 0$, for $|x| \to \infty \}$ all $n,m > 0 \}$. $S^* = \{ \text{tempered distributions} \}$. Then, for example,

$$\delta(B) = \frac{1}{2\pi i} e^{iyB} dy$$

and generally for $f \in S$ or S^*,

$$f(B) = \int e^{iyB} f(y) dy.$$

Remark: We use the normalization $f(y) = \frac{1}{2\pi i} e^{-iyx} f(x) dx$.

As a runs from $-\infty$ to $= e^{AB}$ forms a group of operators. We are tacitly assuming that a suitable domain exists. A basic means of computing, or defining, $e^{AB} f$ is as the solution u to

$$\frac{\partial u}{\partial a} = Bu , \quad u(0) = f.$$

The observation that enables us to use a quantum-mechanical viewpoint is simply this. Assume that $Bl = 0$. Then if the operator U satisfies

$$\frac{\partial U}{\partial a} = [B,U] = BU - UB , \quad U(0) = f,$$

we see that $U = e^{AB} f e^{-AB}$ and $u = U1$. So we can always consider the evolution equations determining exponentials as operator equations. Using exponentials as a basis for our functional calculus we can determine inverse operators too.
We define
\[B^{-1} = \int_0^1 \frac{\lambda}{\chi} \, d\chi \quad \text{and the generating function (resolvent)} \quad \frac{1}{B-z} = \int_0^\infty e^{zy} B^{-1}dy \]

and the generating function (resolvent) \(\frac{1}{B} \) by
\[e^{z} = \int_0^\infty e^{zy} B^{-1}dy. \]

We will denote the Heaviside function by \(\chi \). Thus,
\[\chi(x) = B^{-1} \delta(x) = \int_0^\infty \frac{e^{iyx}}{iy} \, dy = \int_0^\infty e^{-y} B^{-1}dy. \]

HEISENBERG GROUP FORMULATION

Given any two operators \(R, S \) such that \([R, S] = 1\), and \(R^l = 0 \), we can establish a calculus. For clarity we denote our operators by \(D \) and \(x \), noting that \(R \to D \), \(S \to x \) establishes an isomorphism of the given \((R, S) \) system and the familiar one. Our first theorem is the

Generalized Leibniz Lemma (GIL)

\[g(D)^n f(x) = \sum_{k=0}^n \frac{f^{(n)}(x)g^{(n)}(D)}{n!} \]

Remark: This allows us to express all products with derivative operators on the right.

Proof:

Step 1.
\[D^n \circ x = xD^n + nD^{n-1} \quad \text{for } n > 0. \]

n = 1: Definition \([D, x] = 1\).

n = m+1: Multiply \(D^m \circ x = xD^m + mD^{m-1} \) on the left by \(D \).

Then \(D^{m+1} \circ x = xD^{m+1} + (m+1)D^m \) follows.

Step 2.
Multiplying \(D^n \circ x = xD^n + nD^{n-1} \) by \(\frac{t^n}{n!} \) and summing yields
\[e^{tD} \circ x = xe^{tD} + te^{tD} = (x+t)e^{tD}. \]

Induction immediately yields
\[e^{tD} \circ x^n = (x+t)^n e^{tD} \]

and hence
\[e^{tD} \circ x = e^x e^{stD}. \]

Step 3. Therefore
\[e^{tD} \circ x^n = \sum_{n=0}^\infty \frac{t^n}{n!} x^n e^{stD} = \sum_{n=0}^\infty \frac{t^n}{n!} x^n e^{stD} \quad e^{tD}. \]