Let D be a principal ideal domain and F be its field of fractions. Then it is well known that a linear representation of a finite group over F is equivalent to a representation over D. This is proved by Burnside in an appendix to [1] for the case $D = \mathbb{Z}$ (the integers); and a complete proof appears, for example, in Theorem (75.3) of [3]. The object of this note is to prove a generalization for infinite groups.

Theorem I. Let D be a principal ideal domain and F its field of fractions. Let $\rho : G \to \text{GL}(n, F)$ be an irreducible representation of an arbitrary group G over F. Suppose that there exists a finite normal separable extension E of F such that ρ splits into absolutely irreducible representations over E. If for each $x \in G$, $\rho(x)$ is conjugate in $\text{GL}(n, F)$ to an element of $\text{GL}(n, D)$, then ρ is equivalent to a representation $\sigma : G \to \text{GL}(n, D)$ over D.

Remark I. $\rho(x)$ is conjugate to an element of $\text{GL}(n, D)$ if and only if the eigenvalues of $\rho(x)$ are integral over D. The condition that each $\rho(x)$ have this property is clearly a necessary condition for the existence of a representation over D. In the case G is finite, this condition is automatically satisfied.

2. In the finite case it is not required that ρ should be irreducible, but some such condition is necessary in the general case. For example, if $G = (\mathbb{Q}, +)$ (the additive group of rationals), $D = \mathbb{Z}$, and $F = \mathbb{Q}$, then $\rho : G \to \text{GL}(2, \mathbb{Q})$ defined by

$$\rho(x) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$$

is not equivalent to a representation over \mathbb{Z}.

3. It is not known whether the existence of the separable normal extension E is a necessary hypothesis. But certainly this hypothesis holds in the cases:

(i) ρ is absolutely irreducible; or

(ii) F is perfect (see [3], §68).
In the case where ρ is absolutely irreducible, an examination of the proof below shows that we do not need to assume each $\rho(x)$ is conjugate to an element of $\text{GL}(n, D)$, merely that the trace $\text{tr} \rho(x) \in D$.

PROOF OF THE THEOREM. Let $\theta = \theta_1$ be an irreducible constituent of $\rho^E = \rho \otimes_E E$, and let $\theta_1, \ldots, \theta_s$ represent the inequivalent conjugates of θ under the Galois group $\text{Gal}(E/F)$. Since E is separable over F, $\rho^E = m_1 \theta_1 + \ldots + m_s \theta_s$ where each θ_i occurs as a constituent m_i times (see [3], Theorem (70.15), or [4], Theorem 1.2 for more details). We can extend the definitions of ρ and θ_i so that they are linear representations of the group algebra $F[G]$.

Define the F-linear functional $\tau : F[G] \to E$ by $\tau(a) = \sum_{i=1}^s \text{tr} \theta_i(a)$ where tr denotes the trace. Note that the values of τ actually lie in F since the θ_i are the conjugates of θ over $\text{Gal}(E/F)$. Moreover, if $x \in G$, then the eigenvalues of $\rho(x)$ are all integral over D by hypothesis; therefore $\tau(x)$ is integral over D. Since a principal ideal domain is integrally closed in its field of fractions, this shows that $\tau(x) \in D$ for each $x \in G$. We also observe that if $a \in F[G]$ and $\tau(ax) = 0$ for all $x \in G$, then $\rho(a) = 0$. Indeed, since the θ_i are mutually inequivalent absolutely irreducible representations of G, a theorem of Frobenius and Schur implies that their coordinate functions are linearly independent (see [3] Theorem (27.8)). Thus $0 = \tau(ax) = \sum \text{tr} \theta_i(a) \theta_j(x)$ for all $x \in G$ implies $\theta_i(a) = 0$ for all i and so $\rho(a) = 0$.

Now choose x_1, \ldots, x_m in G so that $\rho(x_1), \ldots, \rho(x_m)$ is an F-basis for the F-algebra spanned by $\rho(G)$. For each $x \in G$ we have $\lambda_j \in F$ such that

$$\rho(x) = \sum_{j=1}^m \lambda_j \rho(x_j).$$

Then, for each k, $\rho(x_k) = \sum_{j=1}^m \lambda_j \rho(x_j x_k)$ and so

$$\tau(x_k) = \sum_{j=1}^m \lambda_j \tau(x_j x_k) \quad \text{for } k = 1, \ldots, m.$$

We claim that the $m \times m$ matrix $[\tau(x_j x_k)]$ is nonsingular. In fact, otherwise there would exist $a = \sum a_j x_j \in F[G]$ such that $\rho(a) \neq 0$ and $0 = \sum a_j \tau(x_j x_k) = \tau(x_k)$ for $k = 1, \ldots, m$. But this would imply $\tau(ax) = 0$ for all $x \in G$ because $Fp(G)$