few instances in which it will be convenient to use open covers. For example, if \(f, g : X \to Y \) are maps and \(\alpha \) is an open cover of \(Y \), then we say that \(f \) is \(\alpha \)-close to \(g \) provided that for every \(x \in X \) there exists an element of \(\alpha \) containing both \(f(x) \) and \(g(x) \). We say that \(f \) is \(\alpha \)-homotopic to \(g \), and write \(f \simeq_\alpha g \), provided that there exists a homotopy \(F : X \times I \to Y \) from \(f \) to \(g \) such that for every \(x \in X \) there exists an element of \(\alpha \) containing \(F([x] \times I) \). In the case that we are given a controlling map \(p : Y \to B \), then we write \(f \simeq_{p^{-1}(\varepsilon)} g \) to indicate that \(f \) is \(p^{-1}(\varepsilon) \)-homotopic to \(g \).

3. CONSTRUCTION OF \(\text{Wh}(Y)_{\varepsilon} \)

Throughout this section \(p : Y \to B \) will be a map of a compact polyhedron to a metric space. Our goal is to define the controlled Whitehead group \(\text{Wh}(Y)_{\varepsilon} \) and establish some of its elementary properties. We begin by defining \(\text{DR}(Y)_{\varepsilon} \) to be the collection of all PL maps \(f : X \to Y \) which are \(p^{-1}(\varepsilon) \)-sdr's, where \((X,Y)\) is a compact polyhedral pair. There is a natural addition on \(\text{DR}(Y)_{\varepsilon} \) which is defined as follows: for elements \(f_1 : X_1 \to Y \), \(f_2 : X_2 \to Y \) of \(\text{DR}(Y)_{\varepsilon} \) we define \(f_1 + f_2 : X_1 \cup X_2 \to Y \) by \(f_1 + f_2 | X_1 = f_1 \) and \(f_1 + f_2 | X_2 = f_2 \), where \(X_1 \cup X_2 \) is formed by sewing \(X_1 \) and \(X_2 \) together along \(Y \). Note that \(\text{id}_Y \in \text{DR}(Y)_{\varepsilon} \) satisfies \(f + \text{id}_Y = \text{id}_Y + f = f \), for all \(f \in \text{DR}(Y)_{\varepsilon} \).

For elements \(f_1 : X_1 \to Y \), \(f_2 : X_2 \to Y \) of \(\text{DR}(Y)_{\varepsilon} \) we define \(f_1 \simeq f_2 \) provided that there exists a compact polyhedron \(Z \) containing \(Y \) as a subpolyhedron and CE-PL maps \(r_1 : Z \to X_1 \) such that \(r_1 | Y = \text{id} \) and \(f_1 r_1 \simeq_{p^{-1}(\varepsilon)} f_2 r_2 \) rel \(Y \).

Clearly \(\simeq \) is a reflexive and symmetric relation, so it generates an equivalence relation \(\sim \) on \(\text{DR}(Y)_{\varepsilon} \). This means that \(f \sim f' \) provided that there exist elements \(f_1, \ldots, f_n \) such that \(f \simeq f_1 \simeq \cdots \simeq f_n \simeq f' \). Define \(\text{Wh}'(Y)_{\varepsilon} \) to be the set of all equivalence classes of this relation, i.e., \(\text{Wh}'(Y)_{\varepsilon} = \text{DR}(Y)_{\varepsilon}/\sim \).

For any \(f \in \text{DR}(Y)_{\varepsilon} \) we use \([f]_{\varepsilon} \) to denote its equivalence class in \(\text{Wh}'(Y)_{\varepsilon} \).

Define an addition on \(\text{Wh}'(Y)_{\varepsilon} \) by \([f_1]_{\varepsilon} + [f_2]_{\varepsilon} = [f_1 + f_2]_{\varepsilon} \), which is easily seen to be well-defined, associative, and commutative. Also \(0 = [\text{id}_Y]_{\varepsilon} \) is an additive identity, so we conclude that \(\text{Wh}'(Y)_{\varepsilon} \) is a commutative monoid. Finally the controlled Whitehead group \(\text{Wh}(Y)_{\varepsilon} \) is defined to be the subgroup of \(\text{Wh}'(Y)_{\varepsilon} \) that
consists of all invertible elements of $Wh'(Y)_\mathfrak{c}$, i.e., elements $[f] \in Wh'(Y)_\mathfrak{c}$ for which there is an element $[f']$ that satisfies $[f]+[f'] = 0$.

Note that in the definition of the relation \mathcal{E} given above we could have merely assumed that $f_1 : X_1 \to Y$ and $f_2 : X_2 \to Y$ are retractions. The maps appearing in the following result are of this type.

Lemma 3.1. If $f_1 \in \mathcal{E}$ and $f_2 \in \mathcal{E}$, then $f_1 \in \mathcal{E} \circ \mathcal{E}$.

Proof. Since $f_1 \in \mathcal{E}$, there is a compact polyhedron Z_1 and CE-PL maps $r_1 : Z_1 + X_1$, $r_2 : Z_1 + X_2$ such that $f_1 r_1 p^{-1}(\epsilon) = f_2 r_2$ rel Y. Similarly there is a compact polyhedron Z_2 and CE-PL maps $r'_2 : Z_2 + X_2$, $r_3 : Z_2 + X_3$ such that $f_2 r'_2 p^{-1}(\delta) = f_3 r_3$ rel Y. Now form the following diagram:

The space Z at the top is a subpolyhedron of $Z_1 \times Z_2$ which results from a pull-back construction,

$$Z = \{(z_1, z_2) \mid r_2(z_1) = r'_2(z_2)\}.$$

Y is identified with $\{(y, y) \mid y \in Y\} \subset Z$ and u, v are projection maps which are CE-PL and which are the identity on Y. Finally we have

$$f_1 r_1 u = f_2 r_2 u = f_2 r'_2 v = f_3 r_3 v \text{ rel } Y.$$

The above result seems to imply that the relation \sim on $DR(Y)_\mathfrak{c}$ is unstable in the sense that all ϵ-control is lost. This is definitely not the case, and the stability of the relation \sim is the goal of the remainder of this section.

In the following result X, W are compact polyhedra, α is an open cover of W, and $f_0, f_1 : X \to W$ are PL maps thus giving rise to polyhedral mapping