In this note we construct a measurable set \(D \subset [0,\infty) \times \Omega \), a 3-dimensional Bessel process, \(X \), and a filtration, \(\{ F^B_t \} \), containing the canonical filtration, \(\{ F^X_t \} \), of \(X \) satisfying the following properties:

(i) \(X \) is an \(\{ F^B_t \} \)-semimartingale.
(ii) \(D \) is an \(\{ F^X_t \} \)-progressively measurable set, i.e.,
 \[D \cap ([0,t]) \in \text{Borel} \left([0,t] \times F^X_t \right) \text{ for all } t \geq 0. \]
(iii) \(\int_0^t I_D \, dX = X(t) \), where the left side is interpreted with respect to \(\{ F^X_t \} \), and \(I_D \) denotes the indicator function of \(D \).
(iv) \(\int_0^t I_D \, dX \) is an \(\{ F^B_t \} \)-Brownian motion when the stochastic integral is taken with respect to \(\{ F^B_t \} \).

As the local martingale part of \(X \) with respect to either filtration will be a Brownian motion (since \([X](t) = t \)) , \(\int_0^t I_D \, dX \) may be defined in the obvious way even though \(D \) will not be predictable.

Let \(B \) be a \(1 \)-dimensional Brownian motion on a complete \((\Omega, F, P)\). If \(M(t) = \sup_{s \leq t} B(s) \), \(Y = M - B \) and \(X = 2M - B \), then \(Y \) is a reflecting Brownian motion, and \(X \) is a 3-dimensional Bessel process by a theorem of Pitman [4]. \(\{ F^X_t \} \), respectively \(\{ F^B_t \} \), will denote the smallest filtration, satisfying the usual conditions, that makes \(X \), respectively \(B \), adapted. \(F^X_t \leq F^B_t \) is clear, and since \(M(t) = \inf_{s \geq t} X(s) \), the inf being assumed at the next zero of \(Y \), we must have \(F^X_t \leq F^B_t \) for \(t > 0 \), as \(M(t) \) cannot be \(F^X_t \)-measurable. Finally, define

\[D = \{ (t, \omega) \mid \lim_{n \to \infty} \lim_{k \to \infty} I(X(t+2^{-k}) - X(t+2^{-k-1}) > 0) = 1/2 \} \].
Property (i) is immediate and for (ii), fix $t \geq 0$ and note that

$$D \cap [0,t] = \{(t) \times D(t)\} \cup \{(s,\omega)\mid s \leq t - 2^{-N}\},$$

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=N}^{\infty} I(X(s+2^{-k}) - X(s+2^{-k-1}) > 0) = 1/2 \in \text{Borel}([0,t]) \times F_t^X.$$

Here $D(t)$ is the t-section of D. To show (iii) choose $t > 0$ and note that

$$X(t+2^{-k}) - X(t+2^{-k-1}) = B(t+2^{-k-1}) - B(t+2^{-k})$$

for large k a.s.

Therefore the law of large numbers implies that

$$\text{(1)} \quad P((t,\omega) \in D) = 1 \quad \text{for all} \quad t > 0.$$

The canonical decomposition of X with respect to $\{F_t^X\}$ is (see McKean [3])

$$\text{(2)} \quad X(t) = W(t) + \int_0^t X(s)^{-1} ds,$$

where W is an $\{F_t^X\}$-Brownian motion. Therefore with respect to $\{F_t^X\}$ we have

$$\int_0^t I_D dX = \int_0^t I_D dW + \int_0^t I_D X_s^{-1} ds = X(t) \quad \text{a.s. (by (1))}.$$

It remains only to prove (iv). If

$$T(t) = \inf\{s\mid M(s) > t\},$$

we claim that

$$\text{(3)} \quad P((T(t),\omega) \in D) = 0 \quad \text{for all} \quad t \geq 0.$$

Choose $t \geq 0$ and assume $P((T(t),\omega) \in D) > 0$. Since $X(T(t)+\cdot) - X(T(t))$ is equal in law to $X(\cdot)$, the 0-1 law implies that

$$P((T(t),\omega) \in D) = 1.$$

The dominated convergence theorem and Brownian scaling imply