VECTOR LATTICES OF UNIFORMLY CONTINUOUS FUNCTIONS AND SOME
CATEGORICAL METHODS IN UNIFORM SPACES

Anthony W. Hager
Wesleyan University, Middletown, Connecticut 06457

This somewhat expository paper is organized around the diagram

\[
\text{unif} \xrightarrow{C} \text{C-spaces} \xleftarrow{G} \mathcal{E}\text{-spaces} \xrightarrow{F} \mathcal{L}
\]

with categories: \text{unif}, of separated uniform spaces; \mathcal{L}, of "semi-simple vector lattices with unit"; \mathcal{E}\text{-spaces}, whose objects are pairs \((L,X)\), where \(L\) is a point-separating vector lattice of real-valued functions on the set \(X\), containing the constant function 1 (so \(L \subseteq \mathcal{L}\)), and a morphism \((L_1,X_1) \xrightarrow{\varphi} (L_2,X_2)\) is an algebraic homomorphism \(L_1 \xrightarrow{\varphi} L_2\) for which there is a (necessarily unique) map \(X_1 \xleftarrow{\varphi'} X_2\) such that \(\varphi(f) = f \varphi'\) for \(f \in L_1\); a \(\mathcal{E}\)-space is an \(\mathcal{E}\)-space of the form \((C(\mu X),X)\), where \(\mu X \in \text{unif}\) and \(C(\mu X)\) is all uniformly continuous \(\mu X \rightarrow \mathbb{R}\) (\(\mathbb{R}\) being the usual real line).

and functors: \(C\), just described; \(G(L,X) = (C(\mu L,X),X)\), where \(\mu L\) is the weak uniformity generated by \(L\); \(F\), the obvious forgetful functor; \(H\), which represents \(L \subseteq \mathcal{L}\) as an \(\mathcal{E}\)-space \((L',\mathcal{U}(L))\), where \(\mathcal{U}(L)\) is a certain space of ideals (or Homomorphisms) of \(L\).

The dotted arrow stands some methods of generating subcategories of \text{unif} from subcategories of \text{C-spaces} (or of \(\mathcal{L}\)). (There is a functor in the position of the dotted arrow, "quasi-adjoint" to \(C\).)

Note that if \((L_1,X_1) \xrightarrow{\varphi} (L_2,X_2)\) is an \(\mathcal{E}\)-space morphism, with inducing map \(X_1 \xleftarrow{\varphi'} X_2\), then \(\mu_{L_1} X_1 \xleftarrow{\varphi'} \mu_{L_2} X_2\) is uniformly
continuous. The converse holds for C-spaces: each uniformly continuous $\mu X \xrightarrow{\varphi'} \nu Y$ induces a morphism $(C(\mu X), X) \xrightarrow{\varphi} (C(\nu Y), Y)$. This makes the category of C-spaces the "opposite" of the full subcategory of uf of all μX where μ is weak generated by some pR-valued functions. This latter category is $O(pR)$, all subspaces of uniform powers of pR, and we have a reflecting functor $\text{uf} \xrightarrow{C} O(pR)$.

The paper contains at least ten reflections and twenty-two coreflections, so we state the definition: Subcategory \mathfrak{Q} of G is reflective in G if to $A \in G$ corresponds $A \xrightarrow{b_A} bA \in \mathfrak{Q}$ such that if $A \xrightarrow{m} B \in \mathfrak{Q}$, then there is unique $bA \xrightarrow{b m} B$ with $m = (b m) \cdot b_A$. Then: bA is the reflection of A, b_A is the reflection map, and b is a functor, the reflector. (We shall assume each b_A epic). Coreflection is defined dually. (For these ideas in topology, see Kennison, Herrlich, Herrlich-Strecker (1,2).)

Examples. $\text{uf} \xrightarrow{C} O(pR)$, $\text{uf} \xrightarrow{e} \text{Sep}$, $\text{uf} \xrightarrow{Y} \Gamma = \text{complete spaces}$ are reflectors: Sep consists of "separable" uniform spaces (with basis of countable covers) and $e \mu X$ has basis of countable μ-covers; γ is completion. G is a reflector in L-spaces; rings with identity are reflective in L. $\text{uf} \xrightarrow{\alpha T}$ Fine spaces is a coreflector, where $T \mu X$ denotes the underlying topological space and α is the fine uniformity.

We can outline the paper. Section 1 gives a characterization of C-spaces among L-spaces of Fenstad (1,2). Section 2 shows that (F, H) is an equivalence between complete L-spaces and L, thus as equivalence between complete C-spaces and a certain L_C (described by Section 1), thus a duality (or contravariant equivalence) between $O(pR) \cap \Gamma$ is $R(pR)$, the reflective hull of pR, consisting of all closed subspaces of powers of pR.) This duality follows Isbell (1) and Fenstad (2), but the explicit statement of it seems new. Section 3 considers special properties of $C(\mu X)$'s (e.g., ring) which "are"