Introduction

Let M be a differentiable manifold of dimension m. A field of $(m-q)$-planes on M is a vector subbundle η of rank $m-q$ of the tangent bundle τM of M. This field is said to be completely integrable if it defines a foliation. This means that for each point x of M, there is a submersion f of a nbhd U of x in \mathbb{R}^q such that the kernel of the differential τf at any point y of U is the fiber of η at y.

We shall denote by $v(\eta)$ the quotient $\tau M/\eta$ which is a vector bundle of rank q on M; let π be the natural epimorphism $\tau M \to v(\eta)$.

Let us compare the following two theorems.

Gromov-Phillips transversality theorem

Let η be a field of $(m-q)$-planes on M. A map of a differentiable manifold X in M is said to be transversal to η if the composition $\pi \cdot \tau f : \tau M \to v(\eta)$ is an epimorphism of vector bundles, namely for each point x of X it is a linear surjective map of the fiber $\tau_x M$ on the fiber $v_{\tau_x} (\eta)$. Note that if η is completely integrable, so is the subbundle $\text{Ker} \ (\pi \cdot \tau f)$ of τX.

If X is an open manifold (i.e. if $X - \partial X$ has no compact connected component), the theorem asserts that a map $f : X \to M$ is homotopic to a map transversal to η iff f can be covered by an epimorphism $\tau X \to v(\eta)$. Moreover two maps f_0 and f_1 of M in X which are transversal to η are homotopic through a differentiable family of maps transversal to η iff $\pi \cdot \tau f_0$ and $\pi \cdot \tau f_1$ are homotopic through
Bott theorem

Let η be a completely integrable field of $(m-q)$-planes on the m-dimensional manifold M. Then any rational cohomology class of M of degree $> 2q$ which is a polynomial in the Pontrjagin classes of $v(\eta)$ is always zero.

These two statements reveal two opposite phenomena. In the first case, the condition for a map to be transversal to η is given by an open differential inequality on its differential; the obvious necessary condition on the vector bundles is then sufficient to get, after an homotopy, a map transversal to η (if X is open). On the other hand, the condition for a field η to be completely integrable is given by a differential equality. Bott theorem shows that in order that a field of $(m-q)$-planes be homotopic to an integrable one, very strong necessary conditions must be satisfied.

In these lectures, we shall try to give a general frame for the discussion of homotopy problems involving integrability conditions.

Before giving the general abstract definition of a Γ-structure, we have to give a few words of justification.

Let G be a pseudogroup whose elements are homeomorphisms of open sets of Euclidean space \mathbb{R}^q. For instance, the elements of G could be all diffeomorphisms of class C^r, or those which are volume preserving, or complex analytic local automorphisms of $C^n = \mathbb{R}^q$, when $q = 2n$.

On a topological manifold X, many structures considered in differential geometry are defined by an atlas A compatible with G: namely, the elements of A are homeomorphisms f_i of open sets