The Strong Markov Property for Canonical Wiener Processes

R.L. Hudson
Mathematics Department, Nottingham University, Nottingham, England.

1. Canonical Wiener Processes

By a canonical Wiener process of variance \(\sigma^2 \geq 1 \) indexed by the positive half-line \(\mathbb{R}^+ \), we mean a triple \((P, Q, \psi)\), where \(P, Q \) are functions from \(\mathbb{R}^+ \) to the self-adjoint operators in a Hilbert space \(H \) and \(\psi \) is a unit vector in \(H \), with the following properties.

\(\mathcal{O} \). \([P(s), P(t)] = [Q(s), Q(t)] = 0, [P(s), Q(t)] = -i \min(s, t)\).

1. \(P(0) = Q(0) = 0 \).

2. For disjoint intervals \(\Delta_i = (a_i, b_i] \), \(\Delta_i = (a_n, b_n] \subset \mathbb{R}^+ \), denoting by \((p_i, q_i)\) the canonical pair \((\sqrt{b-a})(P(b) - P(a)), \sqrt{b-a}(Q(b) - Q(a))\)

when \(\Delta = (a, b] \), the canonical pairs \((p_\Delta, q_\Delta)\), \(\ldots, (p_{\Delta_n}, q_{\Delta_n})\) are independent and identically normally distributed with zero means and covariance matrix \(\frac{1}{2} \sigma^2 I_2 \) in the state determined by \(\psi \).

Here the commutation relation \([X, Y] = -ic\), where \(c \) is a real number and \(X, Y \) are unbounded self-adjoint operators means the corresponding Weyl relation \(e^{ixX} e^{iyY} = e^{-icy} e^{ixX} \). A canonical pair is a pair of self-adjoint operators \((p, q) \) satisfying \([p, q] = -iI\) and the definitions of independence, identity of distribution, normal distribution, mean and covariance matrix for canonical pairs are as in [3], [2].

Canonical Wiener processes indexed by the unit interval were introduced in [2] and shown to have some properties analogous to those of classical Wiener processes in [1], [2].

A canonical Wiener process \((P_0, Q_0, \psi_0)\) with \(\sigma^2 = 1 \) is obtained from the Fock representation of the canonical commutation relations over the real Hilbert space \(\mathcal{F} \) of square-integrable functions on \(\mathbb{R}^+ \) by taking \(\psi_0 \) to be the Fock vacuum vector and setting \(P_0(t) = \pi(\chi_{[0, t]}), Q_0(t) = \pi(\chi_{[0, t]}), \) where for \(f \in \mathcal{F}, \pi(f), \overline{\pi(f)} \) are the canonical field operators and \(\chi_{[0, t]} \) is the indicator function of \([0, t]\). When \(\sigma^2 > 1 \), a canonical Wiener process \((P, Q, \psi)\) can be constructed in the Hilbert space tensor product \(H = H_0 \otimes H_0 \) of two copies of Fock space by taking \(\psi \) to be \(\psi_0 \otimes \psi_0 \) and setting

\[P(t) = 2^{-\frac{1}{2}}(\alpha P_0(t) \sigma 1 + \alpha^{-1} Q_0(t)), Q(t) = 2^{-\frac{1}{2}}(\alpha^{-1} Q_0(t) \sigma 1 - \alpha 1 P_0(t)) \]

(1.1)

where \(\alpha \) is a real number such that \(\alpha^2 + \alpha^{-2} = 2\sigma^2 \). These processes are cyclic, meaning that repeated action on the state vector by the constituent operators of the process yields a total set of vectors, and every cyclic process is unitarily equivalent to one of this type.

We denote by \(N \) the von Neumann algebra generated by the spectral projections of the constituent operators of the process \((P, Q, \psi)\), and
for \(\lambda \geq 0 \) by \(N_{\lambda} \) (resp. \(N_{-\lambda} \)) the pre- (resp. post-) \(\lambda \) algebra, generated by the spectral projections of \(P(t),Q(t), t \leq \lambda \) (resp. of \(P(t+\lambda)-P(\lambda), Q(t+\lambda)-Q(\lambda), t \geq 0 \)). \(N_{\lambda}, N_{-\lambda} \) are independent in the sense that if \(A \in N_{\lambda}, B \in N_{-\lambda} \) then \(A, B \) commute and \(\langle AB^\dagger, \gamma \rangle = \langle A^\dagger, \gamma \rangle \langle B, \gamma \rangle \).

A positive self-adjoint operator \(T \) with spectral resolution \(T = \int_0^\infty \lambda dE(\lambda) \) is a Markov time if \(E(\lambda) \in N_{\lambda} \) for all \(\lambda \geq 0 \).

2. Existence of \(P_T, Q_T \)

Analogy with the strong Markov property for a classical Wiener process [5] suggests that if \(T = \int_0^\infty \lambda dE(\lambda) \) is a Markov time for the cyclic canonical Wiener process \((P, Q, \gamma) \) then \(P_T, Q_T, \gamma \) is also a canonical Wiener process, where formally

\[
P_T(t) = \int_0^\infty (P(t+\lambda)-P(\lambda)) dE(\lambda), \quad Q_T(t) = \int_0^\infty (Q(t+\lambda)-Q(\lambda)) dE(\lambda).
\]

To give meaning to (2.1) we first write down the equivalent forms

\[
e^{ixP_T(t)} = \int e^{i\lambda} dE(\lambda), \quad e^{ixQ_T(t)} = \int e^{i\lambda} dE(\lambda).
\]

and observe that the integrands in (2.2), (2.3) belong to \(\lambda N \) whereas the integrator belongs to \(\lambda N \), suggesting that the integrals be defined as strong operator limits of 'backward' Riemann-Stieltjes sums

\[
K(\lambda) = \frac{1}{n} \sum_{j=1}^n e^{i\lambda} e^{-i\lambda} (E(\lambda_j)-E(\lambda_{j-1})),
\]

\[
L(\lambda) = \frac{1}{n} \sum_{j=1}^n e^{i\lambda} e^{-i\lambda} (E(\lambda_j)-E(\lambda_{j-1})).
\]

where \(b > 0 \) and \(\lambda = (0 = \lambda_0 < \lambda_1 < \ldots < \lambda_n = b) \) is a partition of \([0, b] \).

Theorem 2.1 As \(\max(\lambda_j - \lambda_{j-1}) \to 0 \) and \(b \to \infty \) \(K(\lambda), L(\lambda) \) converge strongly to operators \(U, V \), respectively. Moreover for fixed \(t, x \mapsto U_{x,t}, \quad x \mapsto V_{x,t} \), are strongly continuous one-parameter unitary groups whose infinitesimal generators \(P_T(t), Q_T(t) \) satisfy the defining properties (0), (1) of a canonical Wiener process.

Lemma 2.2 For fixed \(t, (x, \lambda) \mapsto e^{ixP(t+\lambda)} e^{-i\lambda} \) is strongly continuous on \(RxR_+ \).

Proof By (1.7) in the case \(\sigma^2 > 1 \) these operator-valued functions are tensor products of corresponding functions for the Fock case \(\sigma^2 = 1 \). Hence it is sufficient to consider the latter case. Using the Fock vacuum expectation functional \(\langle e^{i\pi(f)} \gamma, \gamma \rangle = e^{-\frac{1}{2} \| f \|_2} \), we have after some manipulations, for arbitrary \(f, g \in \mathfrak{g} \),

\[
\| (e^{i\pi(f)} e^{-i\lambda} - e^{i\pi(f)} e^{-i\lambda})_g \|_2 = 2(1 - \cos(\lambda t + \mu) - \eta I_{(\mu, t+\mu)} g) e^{-\frac{1}{2} \| \gamma \|_2}.
\]

From this it is clear that \((x, \lambda) \mapsto e^{ixP(t+\lambda)} e^{-i\lambda} \) is continuous. Since \(\gamma \) is cyclic vectors of the form \(e^{i\pi(f)} \), \(\gamma \) are total in \(H_0 \) and the result follows.

Lemma 2.3 There exists a total set \(S \) of which \(\gamma \) is an element such