1.- INTRODUCTION

The essential role played by the Nijenhuis tensor field N in the problem of the integrability of an almost complex structure J is well known. The aim of the present paper is to point out further properties of the tensor field in the case when the manifold V is endowed with an almost hermitian structure.

An interesting relation linking the Nijenhuis field N and the field DJ, deduced from J by covariant differentiation in the riemannian connection, is obtained in Sec. 4 (Th.1).

This relation is a very useful tool to prove a series of theorems.

A new proof of the known fact, that G_1-spaces and G_2-spaces can be defined in terms of N only, is given in Sec. 6 (Th.3).

A characterization of hermitian manifolds is also obtained in Sec. 6 (Th. 2). This result points out that there is a sort of analogy between these manifolds and G_1-spaces.

Finally, some known classes of almost hermitian manifolds can be characterized, by assigning particular expressions in terms of DJ to the tensor field N (Th. 4, Th. 5, Th. 6; Sec. 7).

2.- ISOMORPHISMS α, W, λ, γ

Let V be an almost hermitian manifold of dimension $2n$ and class c^{2n+1} (1).

(1) For the basic facts about almost hermitian manifolds see K. Yano [11], ch. 9; S. Kobayashi-K. Nomizu [5], II, ch. 9.
Let T^r_s the linear space of tensor fields of type (r,s) on V. In particular, let g be the symmetric field of T^0_2 of class C^1, defining the riemannian metric on V and let J be the field of T^1_1 of class C^{2n}, defining the almost complex structure on V.

Some isomorphisms of T^1_2 play an essential role in the following; namely α, W, λ, γ.

Let σ, ε be the homomorphisms of symmetry, of skew-symmetry of T^1_2; then $\alpha = \sigma - \varepsilon$. The isomorphisms W, λ are defined for any field L of T^1_2 by

$$W_L = - c_3^1 (c_2^2 (L \odot J) \odot J), \quad \lambda L = c_3^1 (L \odot J) \quad (2)$$

Denote by G the symmetric tensor field of T^2_0 satisfying $c_1^2 (g \odot G) = \delta$. Then the isomorphism γ is defined for any field L of T^1_2 by

$$\gamma L = c_2^1 (c_1^2 (g \odot L) \odot G)$$

Equivalent definitions of the isomorphisms α, λ, W are the following. Let L be an arbitrary field of T^1_2; then for any X, Y of T^1_0, we put

$$(\alpha L)(X,Y) = L(Y,X)$$

$$(\lambda L)(X,Y) = JL(X,Y) \quad , \quad (W L)(X,Y) = - JL(X,JY) \quad (4)$$

Similarly, the isomorphism γ can be implicitly defined by

$$g((\gamma L(X,Y),Z) = g(L(Z,Y),X)$$

where Z is an arbitrary field of T^1_0 and $g(\ ,\)$ denotes inner product.

The above definitions show that the isomorphisms W, λ, introduced in [6], depend only on the almost complex structure J and that the isomorphism γ, introduced in [7], depends only on the riemannian structure g.

The basic relations about the isomorphisms α, W, λ, γ are

$$\alpha \alpha = \gamma \gamma = WW = 1 \quad , \quad \lambda \lambda = - 1 \quad (1)$$

$$\alpha \lambda = \lambda \alpha \ , \ \alpha \gamma \alpha = \gamma \alpha \gamma \ , \ W \lambda = \lambda W \quad (2)$$

(2) The symbol \odot^r_s denotes contraction ([1], p. 45).

(3) δ is the classical Kronecker field of T^1_1.

(4) Here J is regarded as an isomorphism of T^1_0.

(5) See [6], n. 3,5 and [7], n. 3.