§ 1. Smart and coarse theorems.

There are two problems, namely desingularization and simplification of a boundary and for each of them two levels of precision in the corresponding theorems which I will call coarse and smart.

Coarse desingularization theorem. Let X be a scheme (or a complex analytic space). Assume that X is reduced. There exists a proper morphism $\pi: X' \longrightarrow X$, such that the induced morphism $\pi^{-1}(X_{\text{reg}}) \longrightarrow X_{\text{reg}}$ is an isomorphism, where X_{reg} is the set of points where the local ring $O_{X,x}$ is regular, and X' is regular.

This is a theorem in the complex analytic case or for X excellent of characteristic zero or for X excellent and $\dim X \leq 2$.

Coarse Simplification of boundary. Let Z be a regular scheme (or smooth complex analytic space), let Y be a closed subset of Z. There exists a proper and birational morphism $\pi: Z' \longrightarrow Z$ such that

1. Z' is regular
2. $\pi^{-1}(Y)$ is a normal crossing divisor,

(for short we say that $\pi^{-1}(Y)$ is a d.n.c.) and each irreducible of $\pi^{-1}(Y)$ is regular.

Of course if Y is regular we achieve that by blowing up Y.

There are various smart versions of these theorems and it is not my intention to discuss them. I will only give one of them.
Smart desingularization theorem. Let X be an excellent scheme of characteristic zero.

There exists a sequence

$$
X = X_0 \leftarrow X_1 \leftarrow X_2 \ldots \leftarrow X_{N-1} \leftarrow X_N
$$

such that

(i) Y_{i+1} is regular, closed in X_i, and contained in the singular locus of X_i, $0 \leq i \leq N-1$.

(ii) X_{i+1} is the blowing up of X_i with center Y_{i+1}.

(iii) X_N is regular.

(iv) if E_i is the inverse image of Y_i in X_i, $1 \leq i \leq N$, then $\bigcup_{1 \leq i \leq N} E_i$ is a divisor with normal crossings.

Here the important condition is (i), because if you start with some embedding of X as a closed subscheme of a regular scheme Z, then by letting $Z_0 = Z$, and $Z_{i+1} = $ blowing up of Z_i with center Y_{i+1}, you get that each X_i is closed in a regular Z_i. In other words if X_i is embedded in a regular Z, then the desingularization X_N is embedded in a regular Z_N.

Remark 1. If X is embedded as a hypersurface in a regular Z, then the coarse simplification of boundary will produce $\pi: Z' \rightarrow Z$ such that $\pi^{-1}(X)$ is a d.n.c. Hence, if X is reduced and irreducible we will get a birational desingularization $X' \rightarrow X$, by taking for X' the component of $\pi^{-1}(X)$ whose image is a divisor in Z. This will only be a coarse desingularization of X, unless we have a smart simplification of boundary, by which I mean some condition implying condition (i) of the smart desingularization theorem.

Remark 2. On the other hand if X is a curve in $\mathbb{P}_3 = Z$, then simplification of boundary will not give a desingularization of X since the strict transform of X is going to be empty because one will