Let G be a unimodular locally compact group, and let π be an irreducible unitary representation of G on a Hilbert space $H_\pi = H$. A matrix coefficient of π is a function of the form

$$f_{v,w}(x) = \langle \pi(x)v, w \rangle,$$

where $v, w \in H$. (In what follows, we adopt the convention that v and w are never 0 unless the case $v = 0$ (or $w = 0$) is trivially needed to make a result nontrivially true.) The function $f_{v,w}$ is obviously constant on cosets of $G_\pi = \text{Ker} \pi$.

We say that π has L^p matrix coefficients $(1 \leq p < \infty)$ if there are (nonzero!) vectors v, w such that $f_{v,w} \in L^p(G/G_\pi)$. Of course, all matrix coefficients are in L^∞. It is easy to check that if $f_{v,w} \in L^p(G/G_\pi)$, then so are $f_\pi(x)v, w$ and $f_{v,\pi(x)w}$ for every $x \in G$; moreover, if v is fixed, then $\{w : f_{v,w} \in L^p(G/G_\pi)\}$ and $\{w : f_{w,v} \in L^p(G/G_\pi)\}$ are subspaces of H. Hence if π has L^p matrix coefficients, then there are dense subspaces V, W of H such that $f_{v,w} \in L^p(G/G_\pi)$ for all $v \in V$ and all $w \in W$. For $p = 2$, more is true: if one matrix coefficient is in L^2 and if G/G_π is unimodular, then all matrix coefficients are L^2. (See, e.g., [3], p. 278.)

Now suppose that G is a nilpotent, connected, simply connected Lie group with Lie algebra \mathfrak{g}. There seem to be two main papers in the literature dealing with matrix coefficients of G: Moore-Wolf ([6]) and Howe-Moore ([5]). It is not surprising, therefore, that the work I am going to describe is the result of a collaboration with Calvin Moore. (The work is still in progress; this is a preliminary report.)

The paper [6] is devoted to a study of square integrable representations (the case $p = 2$). The basic theorem is:
Theorem A. Let $\pi \in G^*$, and let 0_π be the Kirillov orbit in g^* corresponding to π. Then π has L^2 matrix coefficients iff 0_π is flat (a coset of a subspace of g^*). Equivalently: π has L^2 matrix coefficients iff for any $\ell_0 \in 0_\pi$, $0_\pi = \ell_0 + R_{\ell_0}^\perp$. Here, $R_{\ell_0} = \text{radical of } \ell_0 = \{X \in g : \ell_0([X,Y]) = 0 \text{ for all } Y \in g\}$.

One obvious question is whether these representations have matrix coefficients that are better than L^2. We have the following answer:

Theorem 1. Suppose that π has L^2 matrix coefficients (here and below, π is an irreducible unitary representation of the connected, simply connected nilpotent Lie group G). Let π act on H, and let v, w be vectors for π. Then $f_{v,w}$ is a Schwartz class function on G/G_{π}.

Theorem 1 might be interpreted as saying that the matrix coefficients of π are in L^∞ for all $\ell > 0$. Incidentally, there is a similar theorem for p-adic nilpotent Lie groups; see [7].

Now suppose that π is not square integrable. Let G_{π}^\sim be the projective kernel of π (i.e., $x \in G_{\pi}^\sim \Rightarrow \pi(x)$ is a multiple of I); then $|f_{v,w}|$ is constant on cosets of G_{π}^\sim, and we can ask about the behavior of $|f_{v,w}|$ on G/G_{π}^\sim. (In the groups we care about, $G_{\pi}/G_{\pi} \cong T$, so that the distinction between G_{π}^\sim and G_{π} is not too important.)

In [4], the following result was proved:

Theorem B. For all $v, w \in H$, $|f_{v,w}|$ vanishes at v, w on G/G_{π}^\sim.

We can improve on this somewhat. The group G_{π}^\sim is connected; let its Lie algebra be \bar{g}_{π}^\sim. Let $\bar{G}_{\pi} = G/G_{\pi}^\sim$, $\bar{g}_{\pi} = g/\bar{g}_{\pi}^\sim$. Choose a Euclidean norm, $|\cdot|$, on \bar{g}_{π}, and lift it back to \bar{G}_{π} via exp.

Theorem 2. There are vectors v, w, and constants $C, \gamma > 0$ such that on \bar{G}_{π},

$$|f_{v,w}(x)| \leq C(1+|x|)^{-\gamma}.$$

To see why Theorem 1 is true, look at the 3-dimensional Heisenberg