1. Introduction. A series of counterexamples (Cohen [1], De Giorgi [2], Coorjian [3], Pliś [6-11]) has shown that uniqueness theorems for differential equations with non-analytic coefficients require much more restrictive conditions than those in Holmgren's uniqueness theorem. However, there is a considerable gap between these counterexamples and the uniqueness theorems available. In this paper we shall try to narrow the gap or at least make it well defined by making a systematic analysis of the scope of the constructions used in the counterexample.

Let $P(D)$ and $Q(D)$ be two partial differential operators with constant coefficients in \mathbb{R}^n, $D = -i \nabla/\partial x$ as usual, and let H_N be a half space

$$H_N = \{ x \in \mathbb{R}^n ; \langle x, N \rangle \geq 0 \}.$$

We shall study perturbations of P by the operator Q. The problem is to decide when there is a function a such that the equation

$$P(D)u + a Q(D)u = 0$$

has a solution $u \in C^\infty(\mathbb{R}^n)$ with

$$\text{supp } u = H_N.$$

We wish a to vanish when $\langle x, N \rangle = 0$ so that the operator $P(D)$ is not perturbed there. The answer may of course depend on the conditions placed on a. We shall examine the cases where a is required to be analytic, C^∞ or C^j for some finite j. The main results are Theorems 2.2, 3.1, 3.7 and 4.1.

Most uniqueness theorems known for equations of the form (1.1) require that u vanishes outside a set with a strictly convex boundary. A direct comparison with the counterexamples proved here is therefore not possible.
For this and other reasons it would be interesting to modify the constructions with H_N replaced by a strictly convex set, compact sets being particularly important. However, we shall not consider this problem at all here.

2. **Analytic perturbations.** First we recall the situation for the unperturbed operator P:

Theorem 2.1. The equation $P(D)u = 0$ has a solution $u \in C^\infty(\mathbb{R}^n)$ with
\[\text{supp } u = H_N \] if and only if $P_m(N) \neq 0$, where P_m is the principal part of P.

The necessity follows from Helmgren's uniqueness theorem (see Hörmander [4, Theorem 5.3.1]), and the sufficiency is proved by integrating suitable exponential solutions ([4, Theorem 5.2.2]). Holmgren's uniqueness theorem also gives the implication $2) \Rightarrow 1)$ in the following

Theorem 2.2. The following conditions are equivalent if $\mathcal{D}H_N$ is non-characteristic with respect to P:

1) The order of P is smaller than the order of Q.

2) The equation (1.1) has a solution $u \in C^\infty(\mathbb{R}^n)$ satisfying (1.2) for some analytic a in \mathbb{R}^n vanishing when $\langle x, N \rangle = 0$.

3) For any given integer k the equation (1.1) has a solution $u \in C^\infty(\mathbb{R}^n)$ satisfying (1.2) for some analytic a in \mathbb{R}^n vanishing of order k when $\langle x, N \rangle = 0$.

Proof. Since $3) \Rightarrow 2) \Rightarrow 1$ we just have to prove that $1) \Rightarrow 3)$. Let m be the order of Q. If $Q_m(N) \neq 0$, that is, $\mathcal{D}H_N$ is non-characteristic with respect to Q, the proof is somewhat simpler so we consider this case first. Choosing coordinates with $\langle x, N \rangle = x_1$ and taking a and u as functions of x_1 only, we find that it is then sufficient to prove the theorem in the one-dimensional case. Thus we assume that $n = 1$ and set with a positive integer k and