CHAPTER C-II

CHARACTERIZATION

OF POSITIVE SEMIGROUPS

ON BANACH LATTICES

by

Wolfgang Arendt

In this chapter our first goal is to find conditions on a generator A of a semigroup $(T(t))_{t \geq 0}$ which are equivalent to the positivity of the semigroup. After the preparations in A-II, Sec. 2 this is easy if in addition we ask that the semigroup be contractive: $T(t)$ is a positive contraction for all $t \geq 0$ if and only if A is dispersive (Section 1). For arbitrary (not necessarily contractive) semigroups a condition on the generator had been found in the case when $E = C(K)$ (K compact), namely the positive minimum principle (P) (see B-II). One may easily reformulate this condition in arbitrary Banach lattices and show its necessity. However, only in special cases (for example if A is bounded (see Section 1)) the positive minimum principle is sufficient for the positivity of the semigroup. In fact, on $L^2(\mathbb{R})$ there exists a non-positive semigroup whose generator satisfies (P) (Section 3).

Looking for another condition we consider the Laplacian Δ as a prototype. Defined on a suitable domain, Δ generates a positive semigroup on $L^p(\mathbb{R}^n)$. Kato proved the following distributional inequality for the Laplacian:

$$(\text{sign } f) \Delta f \leq \Delta |f|$$

for all $f \in L^1_{\text{loc}}$ such that $\Delta f \in L^1_{\text{loc}}$. In Section 3 we will show that an abstract version of Kato's inequality for a generator A together with an additional condition is equivalent to the positivity of the semigroup generated by A.

Domination of one semigroup by another can be characterized by an analogous condition for the generators (Section 4). The results will be applied to Schrödinger operators on $L^p(\mathbb{R}^n)$.
Finally, in Section 5 we show that \((T(t))_{t \geq 0}\) is a lattice semigroup (i.e., \(|T(t)f| = T(t)|f|\) for all \(t \geq 0\), \(f \in E\)) if and only if \(A\) satisfies Kato's equality. This parallels the case when \(E = C_0(X)\), but if \(E\) has order continuous norm the strong form of Kato's equality can be considered (in particular, \(f \in D(A)\) implies \(|f| \in D(A)\) if \(A\) is the generator of such a semigroup).

1. POSITIVE CONTRACTION SEMIGROUPS AND BOUNDED GENERATORS

In this section we first characterize generators of positive contraction semigroups on a real Banach lattice \(E\).

For that we use the results developed in A-II, Section 2 for the canonical half-norm \(N^+ : E \to \mathbb{R}\) given by

\[
N^+(f) = \|f^+\| \quad (f \in E).
\]

Remark. It is easy to see that \(N^+(f) = \inf \{\|f+g\| : g \in E_+\} = \text{dist} (-f,E_+)\) (cf. A-II, Rem. 2.8).

It is obvious that \(N^+\) is a strict half-norm (see A-II, (2.12)).

The subdifferential of \(N^+\) is given by

\[
dN^+(f) = \{\phi \in E_+^1 : \|\phi\| \leq 1, \langle f, \phi \rangle = \|f^+\|\}
\]

(this follows from the definition, see A-II, (2.5)).

Examples 1.1.

a) Let \(E = C_0(X)\) (\(X\) locally compact). Let \(f \in E\). There exists \(x \in X\) such that \(f(x) = \|f^+\|_\infty\). Then \(\delta_x \in dN^+(f)\).

b) Let \(E = L^p(X,\Sigma,\mu)\), where \((X,\Sigma,\mu)\) is a \(\sigma\)-finite measure space and \(1 < p < \infty\). Let \(f \in E\) satisfy \(f^+ \neq 0\). Let

\[
\phi(x) = \begin{cases}
c \cdot f(x)^{p-1} & \text{if } f(x) > 0 \\
0 & \text{if } f(x) \leq 0
\end{cases}
\]

where \(c > 0\) is such that \(\int |f(x)|\phi(x)\,dx = \|f^+\|\).

Then \(dN^+(f) = \{\phi\}\).

c) Let \(E = L^1(X,\Sigma,\mu)\), where \((X,\Sigma,\mu)\) is a \(\sigma\)-finite measure space, and \(f \in E\). Let \(\phi \in L^{\infty}(X,\Sigma,\mu)_+\). Then \(\phi \in dN^+(f)\) if and only if

\[
\begin{align*}
\phi(x) &= 1 & & \text{if } f(x) > 0, \\
0 \leq \phi(x) \leq 1 & & \text{if } f(x) = 0 \text{ and } \\
\phi(x) &= 0 & & \text{if } f(x) < 0.
\end{align*}
\]