1. Introduction.

Subharmonic functions have been used in the study of minimal surfaces already by Rado [5] and Bechenbach and Rado [1]. The purpose of this paper is to study (pluri-)subharmonic functions having graphs with smallest positive area.

Let U be a domain in \mathbb{R}^n or \mathbb{C}^n and let S be a weak*–closed set of subharmonic functions on U. If b is a given continuous function on ∂U, the problem is to find $h \in S$ with $\lim_{z \to x, z \in U} h(z) = b(x)$, $\forall x \in \partial U$ and such that h minimizes graph area among the functions in S.

2. Existence of solution.

Theorem 1. Let U be a bounded subset of \mathbb{R}^n or \mathbb{C}^n. Let b be a continuous function on ∂U and assume there is a convex function φ, which is the envelope of the affine functions it dominates, and a harmonic function h such that $\lim_{z \to x, z \in U} \varphi(z) = \lim_{z \to x, z \in U} h(z) = b(x)$, $\forall x \in \partial U$.

Assume that S is a weak*–closed family of subharmonic functions containing all the convex functions and stable under \sup. Then there is a function U in S which minimizes graph area among the functions in S.

Proof: Let S_1 denote the functions in S that are minimized by φ and majorized by h. Then S_1 is weak*–compact and we prove first that there is a $v \in S_1$ that minimizes $A(v) = \sqrt{1 + |\text{grad } v|^2}$. Put $\alpha = \inf_{v \in S_1} A(v)$ and choose $v_j \in S_1$, such that $A(v_j) \to \alpha$ as $j \to +\infty$.

Observe that since $v_j \in S_1 \cap L^{1}\text{loc}(U) |\text{grad } U_j|^2 \in L^{1}\text{loc}(U)$ and we can assume that $v_j \to v \in S_1$ (otherwise, pick a subsequence). We claim that $A(v) = \alpha$.

Now $A(v) \geq \alpha$ by the definition of α. Let U' be a relatively compact subset of U. We can then select convex combinations $w_k = \sum_j \theta_j^k v_j$ where $0 \leq \theta_j^k \leq 1$, $\theta_j^k = 0$, $j < k$ and $\sum_j \theta_j^k = 1$ such that w_k tends strongly to w in potential theoretic sense (cf. Landkof
Therefore,
\[\left(\sqrt{1 + |\text{grad } v|^2} \right)^2 \rightarrow 0, \]
as \(k \rightarrow \infty \). But since \(\sqrt{1 + |x|^2} \) is convex we get
\[\int_{U'} \sqrt{1 + |\text{grad } v|^2} = \lim_{n \to +\infty} \int_{U'} \sqrt{1 + |\text{grad } w_k|^2} \]
\[\leq \lim_{k \to +\infty} \sum_{j} \int_{U'} \sqrt{1 + |\text{grad } v_j|^2} \leq \lim_{k \to +\infty} \int_{U'} \sqrt{1 + |\text{grad } v_k|^2} \leq a. \]
Thus \(\int_{U'} \sqrt{1 + |\text{grad } v|^2} \leq a \) for every relatively compact \(U' \) in \(U \) which proves the claim.

To prove the theorem, it is enough to prove that if \(v \in S \), \(\lim_{Z \to X} v(Z) = b(X) \), \(\forall X \in \partial U \) and
\[\max(v, g - \frac{\varepsilon}{2}) = b(X) \]
then \(v \geq \varphi \).

To get a contradiction, assume that \(P_{\varepsilon} = \{ z \in U : v \leq \varphi - \varepsilon \} \neq \emptyset \)
for any \(\varepsilon > 0 \). Then there is a \(z_0 \in P_{\varepsilon} \) and an affine function \(g \)
such that \(g \leq \varphi \) on \(U \) with equality at \(z_0 \). Therefore \(v_\varepsilon = \max(v, g - \frac{\varepsilon}{2}) \in S \), \(\lim_{Z \to X} v_\varepsilon(Z) = b(X) \) and
\[\int_{U} \sqrt{1 + |\text{grad } v_\varepsilon|^2} = \int_{v_\varepsilon = v} \sqrt{1 + |\text{grad } v_\varepsilon|^2} + \int_{v_\varepsilon < v} \sqrt{1 + |\text{grad } v_\varepsilon|^2} < \]
\[\int_{U} \sqrt{1 + |\text{grad } v|^2} = a, \]
since
\[\int_{v < v_\varepsilon} \sqrt{1 + |\text{grad } v_\varepsilon|^2} < \int_{v < v_\varepsilon} \sqrt{1 + |\text{grad } v|^2}, \]
which is a contradiction.