Let V be a vector space of finite dimension n over an algebraically closed field k. The bilinear maps $V \times V \to V$ form a vector space $\text{Hom}_k(V \otimes V, V)$ of dimension n^3, which we do consider here together with its natural structure of an algebraic variety over k. Clearly, the associative maps form a Zariski-closed subset S of $\text{Hom}_k(V \otimes V, V)$. A further simple investigation shows that the associative algebra-structures with 1 on V form a Zariski-open affine subset of S, which we denote by Alg_V or Alg_n. The purpose of this paper is to show that the algebra-structures (with 1) of finite representation type also form an open subset of Alg_n. In other words, if A is an associative algebra with 1, A is of finite representation type if some polynomials P_1, \ldots, P_r do not vanish on the constant structures of A. This answers to a question of M. Auslander.

In §2 we write down explicitly some routine properties of the algebraic set Alg_n. Similar properties of the varieties of modules will be needed in §3. They are given in §1. In §3 we show that, for any natural number r, the algebra structures on V, for which there are only finitely many isomorphism classes of modules of dimension $\leq r$, form an open subset S_r of Alg_n. Our main statement then follows from the fact that, for large r, S_r is equal to the set of all algebra structures of finite representation type. This follows from the conjecture-theorem of Brauer-Thrall-Nazarova-Roiter: The last paragraph is devoted to a thorough investigation of Alg_n for $n = 4$.

We denote schemes by "script letters" as \mathbb{X}. The corresponding roman letter X then stands for the set $\mathbb{X}(k)$ of rational points of \mathbb{X}.
§1. The module varieties.

1.1. Let A be an associative algebra with 1 over the algebraically closed field k. For the sake of simplicity we suppose A to be of finite dimension n over k. If W is a k-vector space of dimension r, the bilinear maps $AxW + W$ form a vector space $\text{Hom}_k(A \otimes W, W)$ of a dimension r^2n, whereas the A-module structures on W form a Zariski-closed subset, which we denote by Mod_A. Clearly Mod_A is the set of rational points of an algebraic scheme Mod_A over k, which may be described in the functorial point of view as follows: for any commutative k-algebra R, we have

$$\text{Mod}_A(R) = \{R \otimes_k A\text{-module structures on } R \otimes_k W\}$$

The consideration of the scheme Mod_A does not need any special commentary. For previous use of it we refer to Artin [1], Procesi [9] or Voigt [10] and recall some of their observations. The linear group $\text{GL}(W)$ obviously operates on Mod_A by means of the formula $$(gf)w = g(f(a_0w), \text{ where } g \in \text{GL}(W), f \in \text{Hom}_k(A \otimes W, W).$$

The orbits of $\text{GL}(W) = \text{GL}(W)(k)$ in $\text{Mod}_A = \text{Mod}_A(k)$ are the isomorphism classes of A-modules with k-dimension r. If $M \in \text{Mod}_A$ is an A-module with underlying vector space W, we denote by T_M the Zariski-tangent space of Mod_A at the point M, by T^0_M the Zariski-tangent space at M of the orbit of $\text{GL}(W)$ through M. We then have the following Proposition (Voigt): For any A-module M with underlying vector space W, there is a canonical isomorphism

$$T_M/T^0_M \cong \text{Ext}^1_A(M, M).$$

Sketch of the proof. Let $k[\epsilon] = k \oplus k\epsilon$ be the algebra of dual numbers, $\epsilon^2 = 0$. By definition, a tangent vector to