INDECOMPOSABLE REPRESENTATIONS
OF FINITE ORDERED SETS

Michèle Loupias

In this paper I shall denote a finite (partially) ordered set, \(k \) a (commutative) field and \(\mathcal{E} \) the category of the finite dimensional vector spaces over \(k \). If we consider \(I \) as a category we note \(\mathcal{I} = \text{Hom}(I, \mathcal{E}) = \) the category of functors from \(I \) to \(\mathcal{E} \). An object \(E \) of \(\mathcal{I} \) is called a representation of \(I \). The category \(\mathcal{I} \) is a Krull-Remak-Schmidt category.

The set \(I \) is said of finite representation type (F.R.T) if \(\mathcal{I} \) has only a finite number of indecomposable objects (up to isomorphism). The purpose of this work is to determine all the sets of F.R.T. We shall suppose from hereon that \(I \) is connected.

1. GENERALITIES - CRUCIAL SETS - CRITICAL SETS

Some well known sets of F.R.T are the sets \(A_n, D_n, E_6, E_7, E_8 \) defined in [2] and the cycles defined in [1].

1.1- PROPOSITION - The following sets are not of F.R.T

\[E_6 = c_2 - c_1 - a - d_1 - d_2 \]
\[E_7 = c_3 - c_2 - c_1 - a - d_1 - d_2 - d_3 \]
\[E_8 = c_2 - c_1 - a - d_1 - d_2 - d_3 - d_4 - d_5 \]
\[D_1 = b_4 - a - b_2 \]
\[A_4 = a \]
\[R_1 = a \]

\[b \]
\[c \]
\[d \]
\[b_1 \]
\[b_1 \]
\[b_1 \]
The result is known for the sets E_6, E_7, E_8, D_4 and A_4.

For R_1, R_2, R_3, R_4 it follows from an equivalence between the category of the representations E of the set $a - a_1$ such that $\ker E(c - a) \cap \ker E(c - b) = 0$ and the category of the representations F of the set $a' \to s' \to b'$ such that $\text{Im } F(a' - s') + \text{Im } F(b' - s') = F(s')$: to E we associate F, by setting $F(s') = \text{the fiber coproduct of } E(a)$ and $E(b)$ under $E(c)$, and $F(a') = E(a)$, $F(b') = E(b)$, $F(d') = E(d)$.

Let \mathcal{A} be the category of filtered vector spaces A, with the filtration $B' \to X \to A \leftarrow A_4 \leftarrow A_3 \leftarrow A_2 \leftarrow A_1 \leftarrow A \leftarrow C \to Y$.