Removing Index-Zero Singularities with C^1-small Perturbations.

Carl P. Simon and Charles J. Titus.

1. Introduction.

Let D^n be an n-dimensional disk with boundary an $(n-1)$ sphere, S^{n-1}. It is well known that a continuous $f : S^{n-1} \rightarrow S^{n-1}$ is extendable to a continuous $F : D^n \rightarrow S^{n-1}$ if and only if the degree of f is zero. Furthermore, given a continuous mapping $F : D^n \rightarrow \mathbb{R}^n$, a point p in the interior of D^n and a closed disk U^n such that $F^{-1}(F(p)) \cap U^n = \{p\}$ and the local degree of $F|U^n$ at $F(p)$ is zero, then for every $\varepsilon > 0$ there exists a mapping $G : D^n \rightarrow \mathbb{R}^n$ such that

(i) G is ε-close to F in the C^0 topology,
(ii) G is equal to F on $D^n \setminus U^n$,
(iii) $F(p)$ is not in the image of $G|U^n$.

Now, suppose M^n is a C^k manifold of dimension n, k and n at least one. Let X be a tangent vector field on M and U a closed n-disk in M about p such that $X|U$ is zero only at p and the index of p as a stationary point of X is zero. Since one can consider $X|U$ as a mapping $U \rightarrow \mathbb{R}^n$, the above statement implies that for every $\varepsilon > 0$, there exists a vector field Y on M so that

(i) Y is ε-close to X in the C^0 topology,
(ii) Y is equal to X outside U,
(iii) Y has no zeros in U.

In other words, index zero singularities can be removed with C^0-small perturbations.

Whether or not this phenomenon persists for C^{k+2} vector fields X with perturbations to vectorfields Y nearby in the C^k topology is an important question in the study of stability and bifurcations of dynamical systems. See, for example, Question 4.1 in Hirsch [1]. In this paper, we conjecture that this phenomenon indeed persists for all k and n and settle the conjecture for $k = 1$ and $n = 2$.
Theorem 1. Let M be a smooth 2-manifold with X a C^k vector field on M, $k \geq 1$. Let U be a closed 2-disk in M with $X|U$ zero only at $p \in U$ and the index of X at p equal to zero. Then, for every $\varepsilon > 0$, there exists a C^k vector field Y such that

(i) Y is ε-close to X in the C^1-topology,
(ii) Y equals X outside U,
(iii) Y has no zeroes in U.

The next theorem states the corresponding result for fixed points of maps or diffeomorphisms. Let $k \geq 1$ and let $C^{k,1}(M^2)$ be the space of C^k mappings of the manifold M^2 to itself with the fine C^1 topology; see Munkres [2].

Theorem 2. Let $h \in C^{k,1}(M^2)$ with p an isolated fixed point of h of index zero. Let N be a neighbourhood of h in $C^{k,1}(M^2)$ and U a neighbourhood of p containing no other fixed point of h. Then, there is an $\hat{h} \in N$ with $\hat{h} = h$ outside U and with \hat{h} fixed point free in U. Furthermore, if h is a diffeomorphism, \hat{h} can be chosen to be a diffeomorphism.

Theorem 3 describes the same phenomenon from another point of view.

Theorem 3. Let P be a smooth 4-dimensional manifold, and let L_1 and L_2 be smooth submanifolds of P of dimension κ and $4-\kappa$ respectively. Suppose $x \in L_1 \cap L_2$ such that (a) there is a neighbourhood U of x in P with $L_1 \cap L_2 \cap U = \{x\}$ and (b) the local intersection number of L_1 and L_2 at x is zero. Then, arbitrarily C^1-close to L_2 there is a smooth $(4-\kappa)$-dimensional submanifold of P, say \hat{L}_2, such that (i) $L_2 = \hat{L}_2$ outside U and (ii) $\hat{L}_2 \cap L_1 \cap U = \emptyset$.

Before proceeding with the proofs of these Theorems, we first make a few simplifications and normalizations. These Theorems are all local results and the proofs of Theorems 1 and 2 reduce immediately to the