A ring S is called a (finite) normalizing extension of a ring R if $R \subseteq S$ and $S = \bigoplus_{i=1}^{n} a_i R$ with $a_i R = R a_i$ for each i. Our aim in this paper and a sequel [8] is to extend to such extensions some of the results concerning the prime ideals of R and S obtained earlier for finite centralizing, or liberal, extensions by Bergman and by Robson and Small (see [6,7]) and, for crossed products $S = R \rtimes G$ with G a finite group, by Lorenz and Passman [4]. These are, of course, both examples of normalizing extensions. Some of the methods used here are applied in another sequel [1] to study chain conditions in R and S.

The basic technique is module-theoretic, viewing S as an R-bimodule. Thus Section 1 discusses the relationship between S and R modules and bimodules. This is applied in Section 2 to give the structure of $I \cap R$, for I a prime ideal of S, and to prove a "lying-over" theorem for prime ideals of R. Incomparability will be discussed in [8].

This paper has an overlap (namely, Corollary 2.2 and much of Theorem 2.1) with recent independent work of Lorenz [5]. Throughout this paper R, S and $\{a_i | i = 1, \ldots, n\}$ will be fixed as described above; and R and S will share a common identity element.

1. MODULES AND BIMODULES

In this section we first discuss the underlying R-module structure of a right S module M; then we comment on the situation for bimodules.

Suppose N is an R submodule of M. We let $Na_i^{-1} = \{m \in M | ma_i \notin N\}$. This is also an R submodule.

Lemma 1.1 The natural group monomorphism $M/Na_i^{-1} \to M/N$ given by $m + Na_i^{-1} \to ma_i + N$ induces a lattice embedding $\mathcal{L}(M/Na_i^{-1}) \to \mathcal{L}(M/N)$ of the lattices of R submodules.

Proof This is easily verified.

We define $b(N)$, the bound of N, to be the largest S submodule of M contained in N. In fact $b(N) = \bigcap Na_i^{-1}$ as is easily checked.
LEMMA 1.2 If N is an essential R submodule of M then so too is $b(N)$.

Proof Let A be an R submodule of M. If $Aa_i = 0$ then $A \subseteq Na_i^{-1}$. Otherwise $Aa_i \cap N \neq 0$ and so $A \cap Na_i^{-1} \neq 0$. Therefore Na_i^{-1} is an essential R submodule of M. Hence so too is $\bigcap Na_i^{-1} = b(N)$.

LEMMA 1.3 M contains an R submodule N maximal with respect to $b(N) = 0$.

Proof Let $\{N_k \mid k \in I\}$ be a chain of R submodules such that $b(N_k) = 0$ for each k. If $b(\bigcup N_k) \neq 0$ then $\bigcup N_k \nexists xS$ for some $0 \neq x \in \bigcup N_k$. Hence $xa_i \in \bigcup N_k$ and so $xa_i \in N_k$ for some $k = k(i)$. It follows that $xS \subseteq N_k$ for $k = \sup k(i)$, a contradiction to $b(N_k) = 0$. Hence $b(\bigcup N_k) = 0$ and so Zorn's lemma can be applied to give N.

We let $\text{rank}_R, \text{rank}_S$ denote uniform ranks of a module over these rings.

LEMMA 1.4 Let $\text{rank } M_S = m$ and let N be an R submodule maximal with respect to $b(N) = 0$. Then $\text{rank}(M/N)_R \leq m$ and $\text{rank } M_R \leq mn$.

Proof Let A_1, \ldots, A_t be R submodules of M strictly containing N whose sum is direct modulo N. Then $b(A_j) \neq 0$ for each j. If $t > m$ then for some j

$$\left(\sum_{i \neq j} b(A_i) \right) \cap b(A_j) \neq 0.$$

But then

$$b(\sum_{i \neq j} A_i) \cap A_j \neq 0$$

and so $\sum_{i \neq j} A_i \nexists N$, a contradiction. Thus $\text{rank}(M/N)_R \leq m$. Hence by 1.1, $\text{rank}(M/Na_i^{-1})_R \leq m$. However, by 1.3, $\bigcap Na_i^{-1} = b(N) = 0$, and so $\text{rank } M_R \leq mn$.

As an immediate consequence, we deduce a result of Lanski [3].

COROLLARY 1.5 If S is a right Goldie ring, so too is R.

Finally in this section we discuss the application of these results to bimodules. Suppose that R,S remain as specified. There are natural ring homomorphisms...