1. Introduction

Let D be a bounded domain in \mathbb{C}^n (or, more generally, in a complex Banach space E). Let $f: D \to D$ be a holomorphic mapping. The set

$$\text{Fix } f = \{ x \in D \mid f(x) = x \}$$

has been studied by many people. Let us recall first the following theorem proved by E. Vesentini [8 and 9]:

Theorem 1.1: Let B be the open unit ball of a complex Banach space E. Suppose that every point z belonging to the boundary ∂B of B is a complex extreme point of B. Let $f: B \to B$ be a holomorphic mapping such that $f(0) = 0$. Then

$$\text{Fix } f = B \cap F,$$

where

$$F = \{ v \in E \mid f'(0) \cdot v = v \}$$

is the eigenspace of the derivative $f'(0)$ of f at the origin for the eigenvalue 1. Moreover, if E is reflexive, there exists a projection $p: E \to F$ of norm 1. So, $B \cap F$ is the image of a linear retraction $B \to B \cap F$.

The proof is based on the notion of complex geodesic. In fact, E. Vesentini [9] proved that, given $z \in D$, there exists a unique complex geodesic through the origin and z, and, more or less, this argument concludes the proof. But, in general, complex geodesics are not unique, and Vesentini's proof cannot be generalized. For example, the case of the bidisc $\Delta \times \Delta$ has been studied by M. Hervé [6] and E. Vesentini [8], and they proved the following result:

Theorem 1.2: Let $f: \Delta \times \Delta \to \Delta \times \Delta$ be a holomorphic mapping. The set $\text{Fix } f$ is one of the following sets:

1. the empty set \emptyset;
2. one point;
3. there exists a holomorphic mapping $\varphi: \Delta \to \Delta$ such that

$$\text{Fix } f = \{(\zeta_1, \zeta_2) \in \Delta \times \Delta \mid \zeta_2 = \varphi(\zeta_1)\}$$
or

\[\text{Fix } f = \{(\zeta_1, \zeta_2) \in \Delta \times \Delta \mid \zeta_1 = \varphi(\zeta_2)\}; \]

4. \(\Delta \times \Delta \).

So, in this example, the set \(\text{Fix } f \) is not a linear subspace, but it is always a connected submanifold.

Now, we are going to give the results of this talk, and, first, we will begin with the finite-dimensional case.

2. Bounded domains in \(\mathbb{C}^n \)

We begin with the following result:

Theorem 2.1: ([13]) Let \(D \) be a bounded domain in \(\mathbb{C}^n \) and let \(f: D \to D \) be a holomorphic mapping. Then \(\text{Fix } f \) is a complex submanifold of \(D \). If \(a \in \text{Fix } f \), its tangent space \(T_a(\text{Fix } f) \) is equal to

\[F = \{ v \in \mathbb{C}^n \mid f'(a) \cdot v = v \}. \]

The proof of this result uses ideas of H. Cartan [3] and E. Bedford [1]. Let \(a \in \text{Fix } f \), and let us consider the sequence \(f^{p} = f \circ \cdots \circ f \) (\(p \) times) of iterates of \(f \). We can find a sequence of integers \(p_j \to +\infty \) such that \(q_j = p_{j+1} - p_j \) and \(r_j = p_{j+1} - 2p_j \) converge to \(+\infty \) and that \(f^{p_j} \) converges to a holomorphic map \(F \) (uniformly on compact subsets of \(D \)). Now, by taking subsequences of the sequences \(q_j \) and \(r_j \), we can suppose that

\[f^{q_j} \to \rho, \quad f^{r_j} \to G. \]

By shrinking \(D \) if necessary, we can suppose that \(\rho, F \) and \(G \) send \(D \) to \(D \). Then, by composition, one proves easily the following relations:

\[\rho \circ F = F \circ \rho = F, \quad F \circ G = G \circ F = \rho, \quad f \circ \rho = \rho \circ f. \]

We deduce that

\[\rho^2 = \rho \circ \rho = \rho \circ F \circ G = F \circ G = \rho. \]

So, \(\rho \) is a holomorphic retraction, and, by a result of H. Cartan [4], there exists a local coordinate chart \(u \) defined on a neighbourhood \(U \) of \(a \), such that \(u(a) = 0 \) and that \(u \circ \rho \circ u^{-1} \) is a linear projection.

We have proved that \(\rho(D) \) is a submanifold of \(D \) containing \(\text{Fix } f \), and it is easy to prove that \(f \) is a biholomorphic automorphism of \(\rho(D) \). It is clear that \(\rho(D) \) is a hyperbolic manifold ([5]), and we can apply the following result of H. Cartan [2]: