In [3] Verbeek gives a general definition of a semigroup extension, which covers Schreier - and ideal - extensions as special cases (Definition 1, p. 22), as follows:

Definition 1. Let A, S be semigroups. The pair (E, δ), where δ is a congruence on E, is a semigroup extension of A by S, iff $E/\delta \cong S$ and there is a subsemigroup A' of E, isomorphic to A, which is a δ-class.

According to this definition, Verbeek shows that there exist extensions of A by S if and only if S contains an idempotent element. (Theorem 1, p. 23). So for finite S there is always an extension of arbitrary A by S. Restricting this general notion of semigroup extension, the concept of union extension is defined by Verbeek as follows:

Definition 2. Let A, S be semigroups and (E, δ) a semigroup extension. The pair (E, δ) is a union-extension of A by S, iff the restriction of δ to $E\setminus A'$ is the identity relation, (A' is the subsemigroup of definition 1).

Note that, according to definition 2, an extension (E, δ) of A of S with 0 as extension idempotent is a union-extension iff E is an ideal extension of A by S.

There is a constructive method to obtain the set of all union-extensions (up to isomorphisms) of A by S for finite A and S, as is indicated in the following theorem, due to Verbeek (Theorem 11, p. 40):

Theorem 1. Let A, S be disjoint semigroups, $i \in S$ an idempotent element. For $E = A \cup S^-$, where $S^- = S \setminus \{i\}$, define an associative multiplication o such that the following conditions hold for all $a, b \in A, s, t \in S^-$: $a \circ b = ab$

\[
\begin{align*}
a \circ s &= \begin{cases}
 is & \text{if } is \neq i \\
 E & \text{if } is = i
\end{cases} \\
s \circ a &= \begin{cases}
 si & \text{if } si \neq i \\
 E & \text{if } si = i
\end{cases} \\
s \circ t &= \begin{cases}
 st & \text{if } st \neq i \\
 E & \text{if } st = i
\end{cases}
\end{align*}
\]
Then \(((E, o), o) \) is a union-extension of \(A \) by \(S \) for \(\delta = A \times A \cup \{(x, x) \mid x \in S^-\} \).

Moreover, any union-extension \((E', \delta') \) of \(A \) by \(S \) is isomorphic to one constructed in this way, where \(i \) is the extension idempotent, (cf. Theorem 1, [1]).

The following question is raised now: what conditions on \(A \) and/or \(S \) determine the existence of union extensions of \(A \) by \(S \) and a construction of all union extensions of \(A \) by \(S \). This problem is attacked and partly solved by Verbeek for special compositions of \(S \).

Definition 3. Let \(S \) be a semigroup containing the idempotent element \(i \) and let \(S^- = S \setminus i \). Define the subsets 1) through 9) of \(S^- \) by

1) \(U^- = \{s \in S^- : is = s, si = s\} \)
2) \(W^- = \{s \in S^- : is = s, si \neq s, si \neq i\} \)
3) \(V^- = \{s \in S^- : is = s, si \neq s, si \neq i\} \)
4) \(W' = \{s \in S^- : is = i, si = s\} \)
5) \(V' = \{s \in S^- : is = i, si = i\} \)
6) \(Z = \{s \in S^- : is = i, si \neq s, si \neq i\} \)
7) \(Y = \{s \in S^- : is \neq s, is = i, si = s\} \)
8) \(X = \{s \in S^- : is \neq s, is \neq i, si = i\} \)
9) \(X = \{s \in S^- : is \neq s, is \neq i, si = i\} \).

A composition of \(S \) with respect to \(i \) is a union of the non-empty subsets 1) through 9) of \(S^- \), which are contained in \(S^- \). For some compositions of \(S \) Verbeek derives necessary and sufficient conditions on \(A \) for the existence of union extensions of \(A \) by \(S \) ([1], Chapter 4). This was extended by Bröck and Jürgensen with the aid of a computer ([1], Tables 1 and 2).

The set of all possible compositions of semigroups was described partly by Verbeek ([3] and Chapter 4), and fully by van Leeuwen ([2]). Since the work of van Leeuwen ([2]) is not generally available it seems appropriate to describe the set of all possible compositions explicitly.

For all 130 combinations of non-empty subsets from Definition 3, 1) through 9), we show that they are possible compositions by giving examples of semigroups \(S \) whose composition consists of 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 non-empty subsets. We show also that the examples can be chosen in such a way that they are bands. It is hard to find a general method for constructing such bands and, in fact, we tried to construct these bands "inductively", using bands \(S \), which can be subsemigroups of the band one wants to construct.

For the composition \(S^- = U^- \cup Y \cup X \) (34) one can show that it is impossible