ON A CONJECTURE OF HOPF FOR \(\alpha \)-SEPARATING MAPS
FROM MANIFOLDS INTO SPHERES

By

FRIEDRICH VILLE
Fachbereich Mathematik
Universität Kassel
Heinrich-Plött Strasse 41
3500 Kassel, West Germany.

1. INTRODUCTION

Let \(f : M \to X \) be a continuous map from a metric space \(M \) into a topological space \(X \). Assume that there exists a real number \(\alpha > 0 \) satisfying

\[
(x_1, x_2 \in M \text{ and } d(x_1, x_2) = \alpha) \implies f(x_1) \neq f(x_2).
\] \hspace{1cm} (1)

(\(d \) denotes the metric of \(M \)). A map with this property will be called a \(\alpha \)-separating map.

In this paper we study the following case: assume \(X = S^n = \{ x \in \mathbb{R}^{n+1} : |x| = 1 \} \) being the \(n \)-dimensional sphere and \(M = M^n \) a smooth compact connected oriented \(n \)-dimensional manifold with a Riemannian metric \(d \). Furthermore let \(\alpha \) be a positive real number such that for any two points \(x_1, x_2 \in M^n \) with \(d(x_1, x_2) = \alpha \) there is a unique minimal geodesic from \(x_1 \) to \(x_2 \). Considering this \(\alpha \) let

\[
f : M^n \to S^n
\]

be a \(\alpha \)-separating map. We will prove the following.

THEOREM

Assuming \(f \) as above, the topological degree of \(f \) does not vanish:

\[
\deg f \neq 0.
\]

This theorem was conjectured by H. Hopf [4, p. 136-137] in 1945. Especially
he noted that even in the case \(M^n = S^n \) (\(n \geq 2 \)) the result is still unknown. He remarked that the theorem is obviously true for \(n = 1, M^1 = S^1 \). In [2, 3] G. Hirsch proved \(\deg f \neq 0 \) under the strong additional assumption that

\[
f(x_1) \neq f(x_2)
\]

if \(d(x_1, x_2) = a \). In [6, 7, 8] the writer proved the theorem for \(M^n = S^n \), \(n \) even, and in the case \(a = n/2 \) for all \(n \). In a recent paper [1] T. tom Dieck and L. Smith gave the following result: under the assumptions above the Euler characteristic of \(M^n \) is even and the following congruences are true: \(\deg f = \chi(M^n)/2, \mod 2 \), if \(n \) is even, and \(\deg f = \chi_{1/2}(M^n), \mod 2 \), if \(n \) is odd and \(n \neq 1, 3, 7 \).

(\(\chi \) denotes the Euler characteristic and \(\chi_{1/2} \) the Kervaire semi-characteristic). This gives an affirmative answer to the conjecture in the case \(M^n = S^n \) for all \(n \) except \(n = 3 \) and \(n = 7 \). In the following sections the theorem will be proved solving the problem of Hopf.

2. Basic Conditions

Let us fix \(\alpha \) and \(f \) as above and assume \(n \geq 2 \). Defining the ball

\[
K_{p, \alpha} := \{ x \in M^n : d(x, p) \leq \alpha \}, \quad p \in M^n,
\]

one obtains

Lemma 1

The topological degree

\[
\delta := \deg(f, K_{p, \alpha}, f(p))
\]

is odd and independent from \(p \in M^n \).

Proof

The oddness of \(\delta \) follows from [8] (proof of Lemma 3). The independence of \(p \), we get from the homotopy invariance of the topological degree in the fol-