1) On a limit problem

We begin with the formulation of a problem, which is important both for probability theory and statistical physics. The multiple Wiener-Itô integral proved to be a very useful tool at the investigation of this problem.

Let \(\xi_n, n \in \mathbb{Z}_v \), where \(\mathbb{Z}_v \) denotes the \(v \)-dimensional integer lattice, be a discrete (strictly) stationary random field. We recall that a set of random variables \(\xi_n, n \in \mathbb{Z}_v \), is called a (discrete) random field. It is called (strictly) stationary if \((\xi_{n_1}, \ldots, \xi_{n_k}) \overset{\Delta}{=} (\xi_{n_1+m}, \ldots, \xi_{n_k+m}) \) for all \(k=1,2,\ldots \) and \(n_1, \ldots, n_k, m \in \mathbb{Z}_v \), where \(\overset{\Delta}{=} \) denotes equality in distribution. For all \(N=1,2,\ldots \) we define the new fields

\[
(1.1) \quad Z_n^N = A_N^{-1} \sum_{j \in B_n^N} \xi_j, \quad N=1,2,\ldots \quad n \in \mathbb{Z}_v
\]

where

\[
B_n^N = \{ j | j \in \mathbb{Z}_v, n^{(i)} \leq j^{(i)} < (n^{(i)}+1)N, i=1,2,\ldots,v \}
\]

(the superscript \(i \) denotes the \(i \)-th coordinate of a vector), and \(A_N \) is an appropriate norming constant.

We are interested in the following questions:

When do the finite dimensional distributions of the fields \(Z_n^N \) converge to the finite dimensional distributions of a field \(Z_n^\ast \)? Which fields \(Z_n^\ast \) can appear as limits?
During the investigation of the above questions one also has to solve the following problem: Which fields \(\xi_n \) satisfy the relation

\[
(\xi_{n_1}, \ldots, \xi_{n_k}) \overset{\Delta}{=} (Z_{n_1}^N, \ldots, Z_{n_k}^N)
\]

for all \(N=1,2,\ldots \) and \(n_1, \ldots, n_k \in \mathbb{Z}_+ \). If the field \(\xi_n \) satisfies relation (1.2) with \(A_N = N^\alpha \) then \(\xi_n \) (or its distribution) is called a self-similar field with self-similarity parameter \(\alpha \). We are interested in the case \(A_N = N^\alpha \) because, under some slight restrictions, for fields \(\xi_n \) satisfying (1.2) \(A_N \) must be chosen in this way.

A central problem both in statistical physics and in probability theory is the description of self-similar fields. We are interested in self-similar fields whose random variables have a finite second moment. This excludes the fields consisting of i.i.d. random variables with a non-Gaussian stable law.

The Gaussian self-similar fields and their Gaussian range of attraction are fairly well known. Much less is known about the non-Gaussian case. The problem is hard, because the transformations of measures over \(\mathbb{R}^\mathcal{V} \) induced by formula (1.1) have a very complicated structure. We shall define the so-called subordinated fields below. (More precisely the fields subordinated to a stationary Gaussian field). In case of subordinated fields the Wiener-Itô integral is a very useful tool for investigating the