A NOTE ON STRONG, NON-ANTICIPATING SOLUTIONS
FOR STOCHASTIC DIFFERENTIAL EQUATIONS:
WHEN IS PATH-WISE UNIQUENESS NECESSARY?

Deborah Allinger

Abstract. A necessary and sufficient condition for obtaining strong, non-anticipating solutions is given. As a corollary, we show that path-wise uniqueness is necessary for the existence of strong solutions in a large class of stochastic differential equations.

1. Introduction. Let Ω, F, P be a certain probability space, $(\mathcal{L}_t), 0 \leq t \leq 1,$ a non-decreasing family of sub-σ-algebras of $F,$ and $W = (W_t, \mathcal{L}_t)$ a Wiener process. Denote by (C_1, B_1) the measurable space of continuous functions $x = (x_t)$ on $[0,1]$ with the σ-algebra $B_1 = \sigma\{x: x_s, s \leq t\}.$ Also, set $B_t = \sigma\{x: x_s, s \leq t\}.$ Let $\alpha(t,x)$ be a measurable, non-anticipative (i.e., B_t-measurable for each t) real-valued functional. We say that the P-a.s. continuous random process $\xi = (\xi_t)$ is a strong solution of the stochastic differential equation (s.d.e.).

\begin{equation}
\frac{d\xi_t}{dt} = \alpha(t,\xi)dt + dW_t
\end{equation}

if, for each $t,$ the variables ξ_t are \mathcal{L}_t-measurable,

$$P\left(\int_0^1 |\alpha(t,\xi)| dt < \infty \right) = 1,$$

and with probability 1 for each $t,$

\begin{equation}
\xi_t = \int_0^t \alpha(s,\xi)ds + W_t.
\end{equation}
In particular, whenever \(F_t = F_t^W, \ 0 \leq t \leq 1 \), a strong solution \(\xi_t \) takes the form

\[
\xi_t(\omega) = \phi(t, W(\omega)) = \langle \delta_t, f(W(\omega)) \rangle, \quad (\lambda \times \text{P-a.s.}),
\]

where \(\lambda \) is Lebesgue measure on \([0,1]\). Here \(\delta_t \) represents evaluation of \(f(W(\omega)) \) at time \(t \); \(f \) is a transformation from \(C_1 \) into \(C_1 \). Letting \(F: C_1 \rightarrow C_1 \) denote the transformation which takes \(x \in C_1 \) to the function \(x - \int_0^t \alpha(s,x)ds \), we can rewrite (0.2) as

\[
\xi_t(\omega)(t) = W_t(\omega), \quad (\omega-\text{a.s.}),
\]

and observe that (0.2), (0.3) are inverse expressions. In other words, existence of a strong solution for the s.d.e. in (0.2) also shows that the non-linear operator, \(F \), can be causally inverted in the sense that there is a transformation, \(f \), which for each \(t \), satisfies

\[
f^{-1}(B_t) \subseteq B_t
\]

and such that

\[
(0.4) \quad F(f(y)) = y
\]

for \(y \) in a set of Wiener measure one. By substituting (0.3) into (0.2) we can represent \(f \) explicitly as

\[
(0.5) \quad f(y)(t) = y(t) + \int_0^t \phi(s,y)ds
\]

where \(\phi(s,y) = \alpha(s,f(y)) \), \((\lambda \times \nu \text{-a.s.})\). \(\nu \) is Wiener measure on \(C_1 \). Moreover, in case the resulting strong solution determines a distribution, \(\mu_{\xi} \), on \((C_1 B_1)\) which is equivalent to Wiener measure, then (0.4) holds for \(f(F(x)) \). Thus the existence of a strong solution, \(\xi \), for the s.d.e. (0.1) is equivalent to the corresponding non-linear transformation, \(F \), being causally invertible.

Methods for determining when strong solutions exist are, in general, neither easy to develop nor apply. One such device is pathwise uniqueness as formulated by Yamada-Watanabe [3]. They showed that if two (weak) solution processes are pathwise identical, then the process is a strong solution. In Theorem 1, we present another condition which is both necessary and sufficient for existence of