THE HARMONIC MEASURE OF POROUS MEMBRANES IN \mathbb{R}^3

Burgess Davis1 and John L. Lewis2

In this paper several theorems concerning harmonic measure in Euclidean three space \mathbb{R}^3 are proved. We believe they are interesting in themselves, and in addition the extension of one of them, Theorem 2, to \mathbb{R}^n, $n \geq 4$, would permit an extension of the results of the authors' paper [2] to these dimensions.

Unless otherwise mentioned we will be working in \mathbb{R}^3, and a point $\bar{x} = (x_1, x_2, x_3) \in \mathbb{R}^3$ for which $x_2 = x_3 = 0$ will often be written x_1.

If r is real put $B(\bar{x}, r) = \{z : |\bar{z} - \bar{x}| \leq r\}$, and if A is a set define $|A - \bar{x}| = \inf_{\bar{y} \in A} |\bar{x} - \bar{y}|$ and $B(A, r) = \{\bar{y} : |\bar{y} - A| \leq r\}$. The (Newtonian) capacity of a compact set E will be signified by $\text{cap} E$, and if K is closed $u_K(\bar{z})$ will stand for the harmonic measure of K relative to the point \bar{z} and the region \mathbb{R}^3, that is for compact E

$$u_E(\bar{z}) = 0 \text{ if } \text{cap} E = 0 \text{ and } u_E(\bar{z}) = \int_E \frac{1}{|\bar{z} - \bar{x}|} d\gamma(\bar{x}) \text{ if } \text{cap} E > 0,$$

where γ is the capacitary measure of E, while in general

$$u_K(\bar{z}) = \sup_E u_E(\bar{z}),$$

the supremum being taken over compact sets E contained in K. The following theorem will be proved.

THEOREM 1. Given $\epsilon, \delta > 0$ there is a $\rho > 0$ such that if F is a closed subset of \mathbb{R}^3, if $B(F, \rho)$ is connected and has diameter at least 1, and if

$$\text{cap}(F \cap B(\bar{x}, \rho)) \geq \delta \text{ cap } B(\bar{x}, \rho) = \delta \rho$$

for all $\bar{x} \in F$, then

$$u_F(\bar{z}) \geq (1 - \epsilon) \ u_{B(F, \rho)}(\bar{z}), \ \bar{z} \in \mathbb{R}^3.$$

1 Supported by NSF Grant.

2 Supported by NSF Grant.
Since $u_B(0,r) = r/|z|$ if $|z| \geq r$, it is clear that the diameter condition of Theorem 1 cannot be entirely removed. Also, if $A = \bigcup B(\lambda i, r)$, n and $r > 0$ fixed, then $\lim_{\lambda \to \infty} u_A(0)/u_B(A,r)(0) = 1$ so that the connectedness condition on F cannot be replaced with a condition solely involving the number of balls of radius ρ needed to cover F. The analogue of Theorem 1 for R^4 does not hold, as the following example shows. Extending our notation for a minute in the natural way to R^4, fix $r > 0$ and let $\Gamma = \{ \bar{x} \in R^4: \frac{4}{i=2} x_i^2 \leq r^2 \}$. Then

$$u_\Gamma(\bar{x}) = r(\frac{4}{i=2} x_i^2)^{-\frac{1}{2}} \text{ if } \frac{4}{i=2} x_i^2 \geq r^2,$$

so that

$$u_\Gamma(\bar{x})/u_B(\Gamma,r)(\bar{x}) = \frac{1}{2} \text{ if } \frac{4}{i=2} x_i^2 \geq (2r)^2,$$

while it is not hard to see that $\text{cap}(B(\bar{x},r) \cap \Gamma) \geq k \text{ cap } B(\bar{x},r)$ for all $x \in \Gamma$, where $k > 0$ does not depend on \bar{x}.

The following theorem is a corollary of Theorem 1 which we believe to hold, essentially unchanged, in R^n, $n \geq 4$.

THEOREM 2. Given $\epsilon, \delta > 0$ there exists $\rho > 0$ such that if F is a closed set in R^3 which satisfies $B(0,1) \cap F = \emptyset$ and has the properties that every (continuous) path connecting 0 to ∞ meets $B(F,\rho)$, and that

$$\text{cap}(F \cap B(\bar{x},\rho)) \geq \delta \text{ cap } B(\bar{x},\rho), x \in F,$$

then $u_F(0) \geq 1 - \epsilon$.

This result follows immediately from Theorem 1, for the path condition implies $u_B(F,\rho)(0) = 1$.

Before proving Theorem 1 we give an example of a result of [2] that we cannot now extend to higher dimensions but could, if we could extend Theorem 2.

THEOREM 3. For each $\epsilon > 0$ there is a $C(\epsilon) < \infty$ such that if Ω is a domain in R^3 with Green function g_Ω, and if \bar{x}, \bar{y} are points in Ω such that $g_\Omega(\bar{x},\bar{y}) \geq \epsilon|\bar{x}-\bar{y}|$, then \bar{x} can be connected to \bar{y} by a path in Ω of length at most $C(\epsilon) |\bar{x}-\bar{y}|$.

An appropriate four dimensional version of this theorem would be implied by the statement that for each positive ϵ there exists $K(\epsilon)$ such that if $\bar{x}, \bar{y} \in D$, for some domain D in R^4, if $|\bar{x}-\bar{y}| = 1$,