NON PARAMETRIC TESTS OF INDEPENDENCE

by

Paul DEHEUVELS

Université Paris VI & E.P.H.E.

Key words: Non parametric methods, tests of independence, distribution free procedures, rank statistics

Summary: If \((X_{n(1)}, \ldots, X_{n(p)})\) is for \(n = 1, 2, \ldots\), an i.i.d. sequence, with \(F_n(x_1, \ldots, x_p)\) as its empirical c.d.f. with margins \(F^{(i)}_n\), \(1 \leq j \leq p\), the empirical dependence function \(D_n\) is the c.d.f. of a probability distribution with uniform margins on \([0,1]^p\), and such that \(F_n(x_1, \ldots, x_p) = D_n(F^{(1)}_n(x_1), \ldots, F^{(p)}_n(x_p))\). We show in this paper that \(D_n(u_1, \ldots, u_p)\) is asymptotically normal for \(p \geq 3\) and show the weak convergence of \(n^{1/2} \{D_n(u_1, \ldots, u_p) - E(D_n(u_1, \ldots, u_p))\}\) toward a limiting gaussian process of which we derive the covariance function in the independence case. These results extend the bivariate case studied in [3] and [5].

Some applications are given to tests of independence, including in particular Kendall's \(\tau\) and Spearman's \(\rho\). We give a tabulation of our test \(T_n(4)\), developed in [3], for \(n = 11 - 30\), extending the tabulation for \(n = 3 - 10\) obtained in [4].

(*) 7 avenue du Château
92340 BOURG-LA-REINE
France
1.- GENERAL RESULTS ON EMPIRICAL DEPENDENCE FUNCTIONS:

Let \(\{X_n(1), \ldots, X_n(p)\} \), \(n = 1, 2, \ldots, p \) be a sequence of i.i.d. \(p \)-variate random vectors, with cumulative distribution function (c.d.f.) \(F(x_1, \ldots, x_p) \), and marginal c.d.f. \(F(1), \ldots, F(p) \). If we assume \(F(1), \ldots, F(p) \) to be continuous, the order and rank statistics associated to the first \(n \) observations of the sequence are uniquely defined w.p. 1 as:

\[
\forall 1 \leq k \leq p, \quad X_{1,n}(k) < X_{2,n}(k) < \ldots < X_{n,n}(k),
\]

\[
\forall 1 \leq i \leq n, \quad X_i(k) = X_{r_{i,n},n}(k).
\]

Let also \(F_n(x_1, \ldots, x_p) \) be the empirical c.d.f. associated to the first \(n \) observations of the sequence, and set likewise \(F_n^{(1)}, \ldots, F_n^{(p)} \) to be its marginal c.d.f.s.

We will use the name of dependence function for any c.d.f. of a probability measure on \([0,1]^P\) with uniform margins. We will define the dependence function of \(F \) by

\[
F(x_1, \ldots, x_p) = D(F(1)(x_1), \ldots, F(p)(x_p)), \quad \forall x_1, \ldots, x_p
\]

and the empirical dependence function of \(F \) by

\[
F_n(x_1, \ldots, x_p) = D_n(F_n^{(1)}(x_1), \ldots, F_n^{(p)}(x_p)), \quad \text{where } x_1, \ldots, x_p \text{ are continuity points of } F_n^{(1)}, \ldots, F_n^{(p)}.
\]

The existence of \(D_n \) was proved in [3], and some of its properties given in [4], [5]. It can be proved that \(D_n \) is uniquely defined on \(I_n = \{(i_1/n, \ldots, i_p/n)\} \), \(0 \leq i_j \leq n, \ 1 \leq j \leq p \) by

\[
D_n(i_1/n, \ldots, i_p/n) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{p} \{ I(i_j - r_{i,n}(j)) \},
\]

where \(I \) stands for the indicator function of \([0, \infty) \), \(I(u) = 1 \) if \(u \geq 0 \), \(0 \) if \(u < 0 \).

For a probability measure giving \(D_n \) as an admissible dependence function, satisfying (2), we can take, for instance:

\[
\nu_n = \frac{1}{n} \sum_{i=1}^{n} U_n(r_{i,n}(1), \ldots, r_{i,n}(p)), \quad \text{where } U_n(1, \ldots, i_p) \text{ is a uniform probability measure on } \prod_{j=1}^{p} [(i_j - 1)/n, i_j/n]. \quad \text{We can assume, unless otherwise specified that it is the case. It will be also useful to introduce :}
\]

\[
\nu_n^* = \frac{1}{n} \sum_{i=1}^{n} \delta(r_{i,n}(1)/n, \ldots, r_{i,n}(p)/n), \quad \text{where } \delta(x) \text{ stands for the Dirac measure at point } x.
\]