A nonempty set \(E \) is called a vector space over a field \(K \) if

(a) \(E \) is an additive abelian group, and
(b) for every \(a \in K \) and \(x \in E \), there is defined an element \(ax \) in \(E \) subject to the following conditions:

\[
\begin{align*}
(b_1) \quad & ax + ay = ax + ay \\
(b_2) \quad & (a + b)x = ax + bx \\
(b_3) \quad & a(bx) = (ab)x \\
(b_4) \quad & 1x = x
\end{align*}
\]

and (a, \(\beta \in K \), \(x, y \in E \) and \(1 \) the unit element of \(K \) under multiplication.

If \(K \) is the field \(\mathbb{R} (\mathbb{C}) \) of real (complex) numbers, the vector space \(E \) is called a real (complex) vector space.

Throughout this book, we deal with only real or complex vector spaces, and we use \(0 \) to denote the zero element of \(K \) as well as that of a vector space.

Proposition 1. If \(E \) is a vector space over \(K \),

(a) \(aO = O \) for all \(a \in K \);
(b) \(0x = 0 \) for \(x \in E \);
(c) \((-a)x = -(ax) \) for \(a \in K, x \in E \);
and (d) \(ax = 0, x \neq 0, \) implies that \(a = 0 \).

A vector space \(E \) with a multiplication (that is, if \(x, y \in E \), then \(xy, yx \in E \)) is called an algebra.
If E is a vector space and F a nonempty subset of E, then F is called a vector subspace (or simply, subspace) of E if, under the operations of E, F itself forms a vector space over the field K. If $x_1, \ldots, x_n \in E$, then $\sum_{i=1}^{n} \alpha_i \cdot x_i$, $\alpha_i \in K$, is called a linear combination of x_1, \ldots, x_n. A subset B of a vector space E is called linearly independent if $B \neq \emptyset$ or $\{0\}$ and no element of B is a linear combination of any finite subset of other elements of B. A maximal linearly independent subset of a vector space is called a Hamel basis (or vector basis). Every vector space has a Hamel basis and any two Hamel bases of a vector space have the same cardinal number. The cardinal number of a Hamel basis of a vector space is called its dimension.

If F is a subspace of a vector space E over the field K, the quotient space of E by F is a vector space E/F over K where, for $x_1 + F, x_2 + F \in E/F$ and $\alpha \in K$,

(i) $(x_1 + F) + (x_2 + F) = (x_1 + x_2) + F$

and (ii) $\alpha(x_1 + F) = \alpha x_1 + F$.

An arbitrary product $E = \prod_{\alpha} E_{\alpha}$ of vector spaces E_{α} is a vector space where addition and scalar multiplication are defined as coordinatewise addition and scalar multiplication.

If $\{E_{\alpha}\}$ is a family of vector spaces and $F = \sum_{\alpha \in I} E_{\alpha} = \{x = \{x_\alpha\} ; \ x_\alpha = 0 \text{ for all } \alpha \text{ except for a finite subset of } I\}$, then F is a vector space, called direct sum of $\{E_{\alpha}\}$, where addition and multiplication