CHAIN RINGS AND VALUATIONS

H.H. BRUNGS
Department of Mathematics
University of Alberta
Edmonton, Alberta, Canada

1. The subring V of a (commutative) field F is called a valuation ring of F if for every $x \neq 0$ in F either x or x^{-1} is in V. If K is an extension field of F, V a valuation ring of F, then there exists a valuation ring V' of K with $V' \cap F = V$, see [9], Chapter VI.

We like to consider the above described situation in the non-commutative case.

A subring R of a division ring D is called a valuation ring of D if x or x^{-1} is in R for every $0 \neq x$ in D. This is equivalent with the condition that D is a skew field of quotients of R and that for any a, b in R, either $aR \subseteq bR$ or $bR \subseteq aR$ and similarly $Ra \subseteq Rb$ or $Rb \subseteq Ra$. If we allow zero divisors, then we call such a ring a chain ring and we call it right chain ring if only the condition on the right ideals is required. A ring is called invariant if all its one-sided ideals are two-sided. If R is a valuation ring of D then R is invariant if and only if R is invariant under all inner automorphisms of D. A ring is right invariant if all its right ideals are two-sided.

Chain rings, or more generally, right chain rings, do not only occur as valuation rings for skew fields ([4], [5], [7], [8]) but also as coordinate rings in geometry, ([6]) as localizations of rings with a distributive lattice of right ideals, ([1]) and as building blocks in structure theorems for, among others, non-commutative Dedekind rings and FPF rings.

We return to the above stated problem: given a valuation ring R of a division ring D and an extension D' of D. Does there exist a valuation ring R' of D' with $R' \cap D = R$? Such a ring R' is called an extension of R in D'. We will show by an example that the answer is no in general, consider then the case where D is the center of the finite dimensional division algebra D' and finally the case where D' is the skew field of quotients of an Ore extension of D.

2. We consider the following well known example. Let $D = \{a_0 + a_1 i + a_2 j + a_3 k \mid a_i \in \mathbb{Q}\}$ be the skew field of quaternions over the rational numbers \mathbb{Q} where $i^2 = j^2 = k^2 = -1$, $ij = -ji = k$, $jk = -kj = i$, $ki = -ik = j$. This is a division ring of dimension four over its center \mathbb{Q}. The local rings $\mathbb{Z}_p = \{\frac{a}{b} \in \mathbb{Q} \mid p \mid b\}$ are valuation rings in \mathbb{Q} for every prime p. We show that there do not exist valuation rings B of D with $B \cap \mathbb{Q} = \mathbb{Z}_p$ for $p \neq 2$. Assume that such a ring B exists and denote by M its maximal ideal. Then B/M is a division ring finite dimensional over the field $\mathbb{Z}_p/M = GF(p)$ with p elements, hence
finite and therefore commutative. However, \(i, j \) are elements in \(B \setminus M \) whose images do not commute in \(B/M \).

For \(p = 2 \) an extension \(B \) of \(\mathbb{Z}_2 \) in \(D \) can be defined as follows:

\[
B = \{ \alpha \in D \mid N(\alpha) \in \mathbb{Z}_2 \}
\]

where \(N(a_0 + a_1 i + a_2 j + a_3 k) = a_0^2 + a_1^2 + a_2^2 + a_3^2 \).

The property \(N(\alpha)N(\beta) = N(\alpha\beta) \) shows that \(B \) is closed under multiplication and also that \(B \) is a valuation ring of \(D \) provided \(N(\alpha + \beta) \) is in \(\mathbb{Z}_2 \) for \(\alpha, \beta \) in \(B \). This last property can be checked directly — of course, it is here where the fact \(p = 2 \) enters.

P.M. Cohn in [5] investigates, using completions, invariant extensions of valuation rings \(V \) in the center \(F \) of a finite dimensional division algebra \(D \). His main result is extended by Wadsworth in [8] as follows: Theorem. A valuation ring \(V \) of \(F \) has an invariant extension \(B \) in \(D \) if and only if \(V \) has a unique extension in every commutative subfield \(K \) of \(D \) with \(K \supseteq F \). It follows immediately from this result, that the number of invariant extensions of \(V \) in \(D \) is either zero or one.

3. We consider the following situation: Let \(D \) be a division ring with center \(F \) and \([D : F] = n^2 \). Let \(V \) be a valuation ring of \(F \) and \(\mathcal{B} = \{ B \mid B \cap F = V \} \) be the set of valuation rings of \(D \) that intersect with \(F \) in \(V \). Then the following result holds ([3]):

Theorem 1. \(|\mathcal{B}| \leq n \) and any two extensions \(B_1 \) and \(B_2 \) of \(V \) in \(D \) are conjugate in \(D \).

To prove this theorem the following results are needed:

Proposition 1. Let \(|\mathcal{B}| \neq 0 \). Then there exists a valuation ring \(R \neq D \) of \(D \) such that \(B \subseteq R \) for all \(B \) in \(\mathcal{B} \).

In the next proposition let \(R \) be a valuation ring of \(D \) minimal with respect to the property of containing all extensions \(B \) of \(V \). Such a ring \(R \) is invariant and we denote with \(N \) its maximal ideal.

Proposition 2. Let \(|\mathcal{B}| > 1 \), \(Z \) the center of \(R/N \) and \(S \) the maximal separable extension of \(K_0 = R \cap N \) in \(Z \). Then, \(K_0 \) is a proper subfield of \(Z \), \(S \) is a Galois extension of \(K_0 \) and each \(K_0 \)-automorphism of \(S \) is induced by an inner automorphism of \(D \).

Theorem 1 is then proved using the above propositions, induction on \(n \) and Galois theory.

We saw earlier that \(\mathcal{B} \) can be empty. The next result shows that \(|\mathcal{B}| \geq 1 \) implies that the integral closure of \(V \) in \(D \) is a subring and can be described as the intersection of the extensions of \(V \) in \(D \) as it is the case in the classical commutative situation.