O/W Microemulsions at low surfactant content

C. M. C. Gambi¹, L. Léger² and C. Taupin²

¹) University of Florence, Department of Physics, Florence, Italy, CISM (of the MPI) and GNSM (of the CNR) groups
²) Laboratoire de Physique de la Matière Condensée, Collège de France, Paris, France, GRECO “Microemulsions” du CNRS

Abstract: Oil–water microemulsions of the five components system water/sodium chloride/toluene/1-butanol/sodium dodecyl sulfate exhibit diffuseness (due to a turbidity gradient) for a very low surfactant content, 0.6 ± 0.006 % w/w. The main characteristics of such microemulsions are described and the existence of nonuniformity is discussed.

Key words: Microemulsions with 5 components, water, toluene, 1-butanol, chloride and dodecylsulfate of sodium, Winsor-phases, diffusion effects, influence of temperature.

In this paper we discuss some interesting characteristics of o/w microemulsions, recently investigated [1, 2] for a very low surfactant content (0.6 ± 0.006 %), of the five components system: water/sodium chloride/toluene/1-butanol/sodium dodecylsulfate (SDS). Because the aim of the work is a better understanding the role of alcohol, surfactant and temperature in the properties of the amphiphilic compounds, a phase diagram has been determined at constant brine/toluene ratio (= 2) and constant salinity (6.5 %); the high salinity value should ensure a practically complete charge screening at the internal interface of the system. The investigation has been carried out in a surfactant concentration range well below that which usually leads to conventional Winsor phases. Under such conditions, a new behavior is exhibited by the samples: transparent upper oily regions coexist with diffuse aqueous regions, the diffuseness being due to a turbidity gradient (see Fig. 1 of Ref. [1]); the interface between the oily and the aqueous regions (which will be simply called ‘interface’ in the following) is sharp. The phase diagram investigation has been therefore performed to cover the domain for which the new behavior is observed, for different alcohol and surfactant contents and at different temperatures. In Winsor equilibria, a turbid phase of the microemulsion type coexists with an oily phase (Winsor I) or an aqueous phase (Winsor II) or both (Winsor III); the excess phases are always transparent. What distinguishes the samples of this phase diagram from conventional Winsor equilibria is the turbidity gradient of the aqueous domain. This diffuse domain coexists either with transparent oily regions or with turbid intermediate homogeneous regions of microemulsion type, plus transparent oily regions, depending on the parameters’ value.

In the five components system under study, an alcohol/surfactant ratio (w/w) higher than 0.9 develops a Winsor III equilibrium and, for a further increase of that ratio (0.9–9), the value of the active mixture percentage necessary to obtain the Winsor III equilibrium decreases [3]. In our phase diagram investigation [2], the alcohol/surfactant ratio covers the range 4–380, the alcohol and SDS contents are in the range 1.9–2.7 % and 0.006–0.6 %, respectively; for all the samples, the active mixture percentage is 2.8–1.9 % and the investigated thermal range 12 °C–30 °C. The aqueous regions exhibit diffuseness for SDS and 1-butanol content in the range 0.006–0.3 % and 1.9–2.5 %, respectively, and for T = 16 °C–26 °C. An active mixture percentage 2.3–2.8 % and an alcohol/surfactant ratio > 10 are conditions necessary to observe such a diffuseness. We point out that the alcohol content cannot be decreased below 1.9 %, otherwise the surfactant spreads on the interface in the form of a white structure; the 0.006 % SDS content corresponds to the minimum amount still weighted with a good accuracy. For all the samples studied, outside the thermal range in which diffuseness is shown, the aqueous region ex-
hibits a homogeneous turbidity for \(T > 26 \, ^\circ C \), while the surfactant spreads on the interface for \(T \leq 16 \, ^\circ C \) (the two liquid regions separated by the interface are transparent). This last result suggests that, for diffuse samples, the surfactant is close to the solubilization limit, for the given proportions of the other components. In summary, for all the diffuse samples, the brine/toluene ratio is constant and the active mixture percentage is also quite constant; thus, in the pseudoternary phase diagram brine/toluene/active mixture, the mass composition points of the samples are approximately in the same position, while the alcohol/surfactant ratio varies by three orders of magnitude. By a comparison of this phase diagram with that of Ref. [3], the mass composition point of diffuse samples is found to be on the boundary between Winsor I and Winsor III equilibria for the alcohol/surfactant ratio \(\approx 9 \).

We should point out that our phase diagram was performed by visual observation on samples thermally stabilized at 0.1 \, ^\circ C for longer than 1 month. This condition could be insufficient to assure the attainment of the thermodynamic equilibrium for samples which are close to the boundary between Winsor I and III equilibria. Thus, the composition and the structure of a typical sample, composed of brine 65.74 %, NaCl salinity 6.5 %, toluene 31.90 %, 1-butanol 2.30 % and SDS 0.04 % (w/w), have been studied with a \(\pm 0.025 \, ^\circ C \) thermal stabilization over 1 month; the aqueous domain is still diffuse. The composition of the upper region and the average composition of the aqueous domain, as well as the composition profile inside the aqueous domain, have been evaluated by the index of refraction measurements. A direct estimate of the composition of the upper transparent region has been done by gas chromatography. Concerning the structure investigation, the autocorrelation function of the scattered light intensity, \(g(t) \) (QELS analysis), has been measured as a function of height throughout the sample. Because the process is diffusive, the mutual diffusion coefficient has been evaluated for all the heights. Furthermore, the transmitted light intensity has been also measured throughout the sample. Variations of the composition and the structure distributions have been observed only during the first stabilization week, thus more than 1 week's stabilization time has been allowed for the sample in all experiments.

We summarize here the main results:

Upper region: No index of refraction variation is observed, thus the upper region is uniform in composition. From the gas chromatographic spectrum, the region is mainly composed of toluene and 1-butanol, in good agreement with the index of refraction results. Furthermore, no correlation time of \(g(t) \) is detectable in the limit of resolution of the apparatus and no variation of the transmitted light intensity is observed. This implies that no aggregates of supramolecular size are present there. The upper region results in a homogeneous oily solution, similar to the excess oily phase of Winsor I and III equilibria.

Aqueous Domain: An index of refraction profile indicates a progressive variation of the composition from the interface to the bottom of the domain. Different profiles are obtained for different temperatures in the range 18 \, ^\circ C - 24 \, ^\circ C. In the aqueous domain, in contrast to the upper region, we detect a correlation time of \(g(t) \) for all the investigated heights down to the bottom of the cell. A transmitted light intensity profile is also detected and this profile changes with temperature.

In summary, from the composition and the structure results, we can describe the aqueous domain as composed of three regions: intermediate, diffuse and lower, respectively, from the interface towards the bottom of the sample; the intermediate and the lower regions are uniform in composition and structure, while the diffuse region displays a composition and a structure gradient. The composition and the structure profiles vary with temperature; their trends (they are sharp for \(T = 20 \, ^\circ C \) and \(T = 22 \, ^\circ C \) and smooth for \(T = 18 \, ^\circ C \) and \(T = 24 \, ^\circ C \)) agree with the phase diagram observations, despite the better thermal stabilization accuracy of such analyses: in fact, observing with the naked eye, the diffuseness disappears for \(T \leq 16 \, ^\circ C \) and \(T > 26 \, ^\circ C \). Finally, the body of the results allows us to establish that the upper region is an excess oily region, while the aqueous domain is of the o/w microemulsion type, down to the bottom of the cell.

To interpret the nonuniformity of the aqueous domain, a discussion in terms of incomplete phase separation, critical type regime, sedimentation of polydisperse globules due to gravity and globules aggregation has been provided in Ref. [2]. The hypothesis of a critical or precritical regime has been excluded. The diffuse samples relax very slowly after mechanical agitation and are placed on the phase boundaries between two and three phase coexistence domains; thus, a possible explanation for the diffuseness is an incomplete phase separation between the intermediate and the lower regions. Before attaining the studied state (diffuse aqueous region plus transparent oily region), the aqueous domain is a polydisperse emulsion, the concentration gradients being larger than for the studied