Chiral Acetylenic Sulfoxides and Related Compounds in Organic Synthesis

Albert W. M. Lee and W. H. Chan
Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong

Sulfoxide, sulfinate and sulfonate are used as activators of acetylenic or vinyl units. Several α, β unsaturated synthons, namely acetylenic sulfoxide (1), vinyl sulfoxide (2), acetylenic sulfinate (3), acetylenic sulfonate (4), and 1-propene-1,3-sultone (5) are developed. Their applications in Diels-Alder reactions, heterocycle and alkaloid syntheses are also investigated. For the chiral acetylenic sulfoxide, the sulfoxide moiety not only enables chemical activation of the acetylene unit, it can also induce stereochemical control at the adjacent carbon centers to achieve enantioselective synthesis.

Table of Contents

1 Introduction ... 104
2 Chiral Acetylenic Sulfoxide 105
 2.1 Synthesis of Homochiral Acetylenic Sulfoxides 105
 2.2 Enantioselective Alkaloid Synthesis 106
 2.2.1 Tetrahydroisoquinoline Alkaloids 107
 2.2.2 β-Carboline and Yohimbine Alkaloids 110
 2.3 Diels-Alder Reactions 113
3 Vinyl Sulfoxide ... 116
 3.1 Alkaloid Synthesis 116
 3.1.1 Hydrohydrastinine 116
 3.1.2 Isoquinolone Alkaloids 117
 3.2 Heterocycle Synthesis 118
 3.2.1 Furans and Pyrroles 118
 3.2.2 1,3-Dithiole-2-one 120
4 Acetylenic Sulfinate and Sulfonate 122
 4.1 Preparation ... 122
 4.2 Diels-Alder Reactions 123
Introduction

Sulfoxide, sulfinate and sulfonate are electron-withdrawing groups [1]. They are all capable of stabilizing their corresponding adjacent carbanionic centers. For example, sulfoxide-stabilized α-carbanions have been extensively used for C–C bond formation including asymmetric synthesis [2]. Over the last few years, our research group has been exploring the uses of these sulfur-containing functional groups as activators of acetylenic or vinylic units. Several α, β-unsaturated synthons, namely acetylenic sulfoxide 1, vinyl sulfoxide 2, acetylenic sulfinate 3, acetylenic sulfonate 4, and propene sultone 5 have been developed and their applications in organic synthesis investigated.

For the acetylenic sulfoxide, because of its configurationally stable pyramidal stereogenic sulfur atom (a lone electron pair, an oxygen and two different carbon substituents), it can exist in chiral forms. Therefore, in chiral acetylenic sulfoxide, the sulfoxide moiety not only serves as a chemical activator of the acetylene unit, it can also induce stereochemical control at the adjacent carbon centers to achieve enantioselective synthesis. In this article, we shall discuss the preparation of these α, β-unsaturated synthons and their applications in Diels-Alder reactions, heterocycle and alkaloid syntheses.