Meromorphic Parametric Non-Integrability; the Inverse Square Potential

Emmanuelle Julliard Tosel

Communicated by P. H. Rabinowitz

Abstract

We let \(H(X, Y, \alpha) \) be a Hamiltonian depending meromorphically on positions \(X \), inertial momenta \(Y \) and parameters \(\alpha \). In Theorem 1 we give conditions for the “meromorphic parametric” non-integrability of \(H \).

Theorem 2 proves the meromorphic non-integrability of the 4-body problem on a line with given masses \((1, m, m, 1)\) with \(m \neq 1 \), and of the 3-body problem in \(\mathbb{R}^p \) with \(p \geq 2 \) and given masses \((1, 1, m)\), for the inverse square potential. Those are the simplest cases left open after the integrability results of Jacobi (3 bodies on a line with arbitrary masses) and Calogero-Moser (\(n \) bodies on a line with equal masses).

Taking the masses as parameters and using both Theorems 1 and 2, we prove Theorem 3, which shows meromorphic parametric non-integrability results for the inverse square potential.

1. Introduction

Since the beginning of celestial mechanics, the \(n \)-body problem with an inverse square potential has been a subject of great interest because of its rich dynamics. In this introduction, we recall the most celebrated results in the field.

Let us consider \(n \) point-masses \((m_i)_{1 \leq i \leq n}\) with a potential \(1/r^2 \) in a \(p \)-dimensional Euclidean space identified with \(\mathbb{R}^p \) (\(p \geq 1 \)). Let \(\| \cdot \| \) be the Euclidean norm. Positions in configuration space are denoted by \(Q = (Q_1, \ldots, Q_n) \), where \(Q_i = (Q_1^i, \ldots, Q_p^i) \) is the position of the \(i \)th mass. The configuration space is identified with \((\mathbb{R}^p)^n \setminus \Delta \), with \(\Delta = \{ Q \in (\mathbb{R}^p)^n \mid \exists (i, j), \ 1 \leq i < j \leq n \text{ and } Q_i = Q_j \} \).

The phase space is the cotangent bundle \(T^* ((\mathbb{R}^p)^n \setminus \Delta) \) of the configuration space. It is identified with \(((\mathbb{R}^p)^n \setminus \Delta) \times (\mathbb{R}^p)^n \). Its elements will be denoted by:

\[(Q, P) = (Q_1, \ldots, Q_n; P_1, \ldots, P_n), \]
where $P_i = m_i \frac{dQ_i}{dt}$ is the linear momentum of the ith point. The “force function”, of opposite sign with respect to the potential, is equal to

$$U(Q) = \varepsilon \sum_{0 \leq i < j \leq n} \frac{m_im_j}{||Q_i - Q_j||^2},$$

where $\varepsilon = 1$ for the attractive problem and $\varepsilon = -1$ for the repulsive problem. The function U is invariant with respect to the isometries of \mathbb{R}^p and the corresponding equations of motion are

$$\left\{ \begin{array}{l}
 \text{for } 1 \leq i \leq n \quad \frac{dQ_i}{dt} = \frac{\partial H}{\partial P_i} = \frac{P_i}{m_i}, \quad \frac{dP_i}{dt} = -\frac{\partial H}{\partial Q_i} = -\frac{\partial U}{\partial Q_i}, \\
 \text{with } \quad H(Q, P) = \frac{1}{2} \sum_{0 \leq i < j \leq n} \frac{||P_i||^2}{m_i} - U(Q).
\end{array} \right.$$