Summary. In this paper we establish a C^1 error estimation on the boundary for the solution of an exterior Neumann problem in \mathbb{R}^3. To solve this problem we consider an integral representation which depends from the solution of a boundary integral equation. We use a full piecewise linear discretisation which on one hand leads to a simple numerical algorithm but on the other hand the error analysis becomes more difficult due to the singularity of the integral kernel. We construct a particular approximation for the solution of the boundary integral equation, for the solution of the Neumann problem and its gradient on the boundary and estimate their C^0 error.

Mathematics Subject Classification (1991): 65N38

Introduction

Let $\Omega \subset \mathbb{R}^3$ be a bounded domain of class C^2 and $\mathring{\Omega} = \overline{\Omega}$ its exterior. Let also $\Gamma = \partial \Omega$ be the boundary of Ω and ν the unitary normal vector to Γ and exterior to Ω. We are interested in the approximation on the boundary of u and Du where u is given by:

\begin{equation}
\begin{cases}
-\Delta u = 0 & \text{in } \mathring{\Omega}, \\
\frac{\partial u}{\partial \nu} = g & \text{on } \Gamma, \\
u = o(1) \text{ at infinity},
\end{cases}
\end{equation}

with $g \in C^\epsilon(\Gamma)$, $\epsilon \in [0, 1)$.

C^1 error estimation on the boundary for an exterior Neumann problem in \mathbb{R}^3

Arian Novruzı

Université Henri Poincaré Nancy 1, Institut Elie Cartan, B.P. 239, 54506 Vandoeuvre-lès-Nancy Cedex, France; e-mail: novruzı@iecn.u-nancy.fr

Received May 11, 1998 / Revised version received July 7, 1999 / Published online August 24, 2000 – © Springer-Verlag 2000
It is well-known that the problem (1) has a unique solution. Moreover, u is given by an integral representation, see [2,5]:

$$u(x) = \int_{\Gamma} q(y)\Phi(x, y)dy, \ x \in \Omega,$$

where $\Phi(x, y) = \frac{1}{4\pi \lvert x - y \rvert}$ is the fundamental solution of Laplace’s equation in \mathbb{R}^3. The unknown function q is the unique solution in $C^\epsilon(\Gamma)$ (see [2]) of the following integral equation on Γ:

$$q(x) - 2\int_{\Gamma} q(y)\frac{\partial\Phi(x, y)}{\partial\nu(x)}dy = -2g(x), \ x \in \Gamma,$$

where $\frac{\partial\Phi(x, y)}{\partial\nu(x)} = D^x\Phi(x, y) \cdot \nu(x)$, D^x is the gradient operator with respect to x and $\nu(x)$ is the normal vector ν at x. If $g \in C^\epsilon(\Gamma)$ with $\epsilon \in (0, 1)$ then $Du \in C^\epsilon(\Gamma; \mathbb{R}^3)$ and (see [2,5]):

$$Du(x) = -\frac{1}{2}q(x)\nu(x) + \int_{\Gamma} q(y)D^x\Phi(x, y)dy, \ x \in \Gamma,$$

where the above integral is understood in the sense of Cauchy’s principal value. Finally, if I is the identity operator on $C^\epsilon(\Gamma)$ and $K : C^\epsilon(\Gamma) \mapsto C^\epsilon(\Gamma)$ is given by

$$Kq(x) = 2\int_{\Gamma} q(y)\frac{\partial\Phi(x, y)}{\partial\nu(x)}dy, \ x \in \Gamma,$$

then the equation (3) is equivalent to:

$$Aq = -2g, \quad A := I - K.$$

Our aim in this paper is to estimate the C^0 error approximation of u and Du on the boundary by using a full piecewise linear discretisation which means that we discretise the boundary Γ and the functional space $C^0(\Gamma)$. This leads to a simple algorithm for the computation of approximation of q, u and Du. On the other hand, the error analysis becomes more delicate because the integral kernel in the integrals above are singular and (3), (4) has no sense for a piecewise linear boundary.

The approximation of the exterior Neumann boundary problem using singular integral representation is object of many works, see for example [1,4,7,9,10]. In these works to obtain a $C^1(\Gamma)$ error estimate a high order approximation is required and, generally, the smoothness of the underlying boundary surface considered is higher than in our paper.