Inorganic Polysulfanes H_2S_n with $n > 1$

Ralf Steudel

Institut für Chemie, Sekr. C2, Technische Universität Berlin, 10623 Berlin, Germany
E-mail: steudel@schwefel.chem.tu-berlin.de

Abstract The sulfanes H_2S_n form a long series of homologous chain-like molecules, starting with hydrogen sulfide and running at least up to H_2S_{35}. These molecules are the parent compounds of numerous derivatives with either organic or inorganic substituents. In this chapter the preparation, structures, physical and chemical properties as well as the spectra of the sulfanes with ≥ 2 sulfur atoms are reviewed. In the literature these species are termed either sulfanes, polysulfanes, or hydrogen polysulfides.

Keywords Sulfur hydrides · Molecular structures · Reactivity · Spectra · Acidities · Application

1 Introduction .. 100

2 Preparation .. 102

2.1 General .. 102

2.2 Crude Sulfane Oil (“Rohöl”, “Raw Sulfane”) 102

2.3 Di-, Tri-, and Tetrasulfane from Crude Sulfane Oil. 105

2.4 Higher Sulfanes by Condensation Reactions 105

2.5 Sulfanes from Silyl Derivatives 106

3 Physical Properties .. 106

3.1 Freezing and Boiling Points 106

3.2 Densities and Viscosities 107

3.3 Thermodynamics ... 107

3.4 Solubility .. 107

4 Molecular Structures ... 108

4.1 Disulfane ... 108

4.2 Trisulfane ... 109

4.3 Tetrasulfane ... 109

4.4 Higher Sulfanes ... 111

4.5 Branched Isomers of the Sulfanes 111

5 Molecular Spectra ... 112

5.1 1H NMR Spectra. 112

5.2 Vibrational Spectra 113

5.2.1 Disulfane ... 113

5.2.2 Trisulfane ... 114

5.2.3 Tetrasulfane .. 114

© Springer-Verlag Berlin Heidelberg 2003
5.2.4 Higher Sulfanes 114
5.3 UV-Vis Spectra ... 115
5.4 Other Spectra ... 115
6 Reactions .. 115
 6.1 Thermal and Photochemical Decomposition 115
 6.1.1 Thermolysis .. 116
 6.1.2 Photolysis .. 118
 6.2 Protonation and Deprotonation. 118
 6.2.1 Protonation .. 119
 6.2.2 Deprotonation 119
 6.3 Nucleophilic Displacement Reactions 120
 6.4 Condensation Reactions 121
7 Applications ... 122
References .. 123

List of Abbreviations

TMS Tetramethylsilane
XANES X-ray absorption near edge structure

1 Introduction

The rather high bond enthalpy of sulfur-sulfur single bonds as in S₈ (264 kJ mol⁻¹) has the consequence that numerous compounds exist in which sulfur atoms form homoatomic chains, rings or clusters. The sulfanes or hydrogen polysulfides H₂Sₙ are the most basic of these species and all other chain-like sulfur-rich compounds may be considered to be derivatives thereof. For example, the dihalogenosulfanes SₙCl₂ [1], the diorganyl-sulfanes R₂Sₙ [2], the sulfane oxides R₂SₙO [2, 3], and the inorganic polysulfides Sₙ²⁻ [4]. The latter are simply the dianions of the Brønsted acids H₂Sₙ and protonation of these anions is a convenient method to prepare sulfane mixtures. The name sulfane has been created in analogy to the boranes, alkanes, silanes, and phosphanes [5].

Mixtures of polysulfanes H₂Sₙ are easy to make and probably occur even naturally but the pure compounds are relatively unstable and can therefore be prepared only with some experimental skills and observing certain technical precautions. Detailed prescriptions exist how to make di-, tri-, tetra-, and higher sulfanes in gram quantities. However, as longer the sulfur chain grows as more difficult it becomes to obtain pure compounds. In general, all