Notes on von Neumann–Jordan and James Constants for Absolute Norms on \(\mathbb{R}^2 \)

Toshiharu Ikeda and Mikio Kato

Abstract. Let \(\| \cdot \|_\psi \) be the absolute norm on \(\mathbb{R}^2 \) corresponding to a convex function \(\psi \) on \([0, 1]\) and \(C_{NJ}(\| \cdot \|_\psi) \) its von Neumann–Jordan constant. It is known that \(\max\{M_1^2, M_2^2\} \leq C_{NJ}(\| \cdot \|_\psi) \leq M_1^2 M_2^2 \), where \(M_1 = \max_{0 \leq t \leq 1} \psi(t)/\psi_2(t) \), \(M_2 = \max_{0 \leq t \leq 1} \psi_2(t)/\psi(t) \) and \(\psi_2 \) is the corresponding function to the \(\ell_2 \)-norm. In this paper, we shall present a necessary and sufficient condition for the above right side inequality to attain equality. A corollary, which is valid for the complex case, will cover a couple of previous results. Similar results for the James constant will be presented.

Mathematics Subject Classification (2010). 46B20, 52A21, 26A51.

Keywords. Absolute norm, convex function, von Neumann–Jordan constant, James constant.

1. Introduction and Preliminaries

Among various geometric constants of Banach spaces \(X \), the von Neumann–Jordan constant \(C_{NJ}(X) \) and the James constant \(J(X) \) are most widely treated (see e.g., [3–5,9,10] for some basic results). In the paper Saito et al. [7] a sequence of results on the von Neumann–Jordan constant for absolute norms on \(\mathbb{C}^2 \) was presented. In particular they showed the following ([7, Theorem 2]): Let \(\| \cdot \|_\psi \) be the absolute normalized norm on \(\mathbb{C}^2 \) corresponding to a convex function \(\psi \) satisfying \(\max\{1 - t, t\} \leq \psi(t) \leq 1 \) on \([0, 1]\). Let \(M_1 = \max_{0 \leq t \leq 1} \psi(t)/\psi_2(t) \) and \(M_2 = \max_{0 \leq t \leq 1} \psi_2(t)/\psi(t) \), where \(\psi_2 \) is the convex function corresponding to the \(\ell_2 \)-norm. Then

\[
\max\{M_1^2, M_2^2\} \leq C_{NJ}(\| \cdot \|_\psi) \leq M_1^2 M_2^2. \tag{1}
\]

For the right side inequality the following was shown.

M. Kato: supported in part by the Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science No. 23540216.
Theorem A (cf. [7, Theorem 3]). Let $\psi \in \Psi$ and let $\psi(t) = \psi(1-t)$ for all $0 \leq t \leq 1$. Assume that $M_1 = \max_{0 \leq t \leq 1} \psi(t)/\psi_2(t)$ or $M_2 = \max_{0 \leq t \leq 1} \psi_2(t)/\psi(t)$ is taken at $t = 1/2$. Then $C_{NJ}(\| \cdot \|) = M_1^2 M_2^2$.

Under the same condition in Theorem A, they showed that $\max\{M_1, M_2\} = C_{NJ}(\| \cdot \|)$ if and only if $\psi \geq \psi_2$ or $\psi \leq \psi_2$ ([7, Theorem 3]).

In this paper, we shall present a necessary and sufficient condition for the complex case and includes Theorem A and Theorem B below.

Theorem B ([7, Theorem 1]). Let $\psi \in \Psi$.

(i) Let $\psi \geq \psi_2$. Then $C_{NJ}(\| \cdot \|) = \max_{0 \leq t \leq 1} \psi(t)^2/\psi_2(t)^2$.
(ii) Let $\psi \leq \psi_2$. Then $C_{NJ}(\| \cdot \|) = \max_{0 \leq t \leq 1} \psi_2(t)^2/\psi(t)^2$.

Next, we shall discuss the James constant $J(\| \cdot \|)$. Owing to the inequality $C_{NJ}(X) \leq J(X)$ shown recently in [10] (cf. [11, 12]), it will be readily obtained that

$$\max\{M_1^2, M_2^2\} \leq J(\| \cdot \|) \leq \sqrt{2} M_1 M_2. \quad (2)$$

We shall characterize equality-attainedness for the both sides inequalities in (2), from which a couple of previous results by Mitani and Saito [6] will be derived as a corollary. Finally, we shall present an example, which will illustrate that our results provide a new way to determine these constants, where some related geometric constants such as the modified von Neumann–Jordan and Zbăganu constants are also treated.

A norm $\| \cdot \|$ on \mathbb{C}^2 is called absolute provided $\|(z, w)\| = ||(z, |w|)||$ for all $(z, w) \in \mathbb{C}^2$, and normalized provided $\|(1, 0)\| = \|(0, 1)\| = 1$. Let Ψ be the collection of all convex functions ψ on $[0, 1]$ satisfying the condition

$$\max\{1-t, t\} \leq \psi(t) \leq 1 \quad (0 \leq t \leq 1). \quad (3)$$

For any $\psi \in \Psi$ define

$$\|(z, w)\|_\psi = \begin{cases} \langle |z| + |w| \rangle \psi \left(\frac{|w|}{|z| + |w|} \right) & \text{if } (z, w) \neq (0, 0), \\ 0 & \text{if } (z, w) = (0, 0). \end{cases} \quad (4)$$

Then, $\| \cdot \|_\psi$ is an absolute normalized norm on \mathbb{C}^2 and satisfies $\psi(t) = \|(1-t, t)\|_\psi$; and any absolute normalized norm on \mathbb{C}^2 is obtained in this way ([2]). For the ℓ_p-norm $\| \cdot \|_p$ the corresponding convex function ψ_p is given by

$$\psi_p(t) = \begin{cases} (1-t)^p + t^p \right)^{1/p} & \text{if } 1 \leq p < \infty, \\ \max\{1-t, t\} & \text{if } p = \infty. \end{cases}$$

The von Neumann–Jordan constant for a Banach space X is defined to be

$$C_{NJ}(X) = \sup \left\{ \frac{\|x + y\|^2 + \|x - y\|^2}{2(\|x\|^2 + \|y\|^2)} : (x, y) \neq (0, 0) \right\}.$$