Invariance under outer inverses

R. E. Hartwig and P. Patrício

Abstract. We shall use the minus partial order combined with Pierce’s decomposition to derive the class of outer inverses for idempotents, units and group invertible elements. Subsequently we show, for matrices over a field F, that the triplet $B\hat{A}C$ is invariant under all choices of outer inverses of A if and only if $B = 0$ or $C = 0$.

Mathematics Subject Classification. 15A09, 16E50.

Keywords. Invariance, Outer inverses, Regularity, Pierce decomposition.

1. Introduction

Let R be a ring with 1.

An element a is called regular if $aa^-a = a$ for some inner or 1-inverse a^-. The condition for regularity is a linear condition, and the set of all inner inverses is given by

$$\{a^{(1)}\} = a^- + (1 - a^- a)R + R(1 - aa^-).$$

An outer or 2-inverse \hat{a} of an element a is such that $\hat{a}a\hat{a} = \hat{a}$. It is a quadratic condition in \hat{a}. It is clear that $\hat{a}a\hat{a}$ will always be regular.

A 1–2 or reflexive inverse of a is denoted by a^+ and satisfies

$$aa^+a = a$$

and $a^+aa^+ = a^+$. The set of all outer inverses of an element a will be denoted by T_a or $\{a^{(2)}\}$ and the set of all idempotents will be denoted by E. It is clear that a regular element a admits a^-aa^- as an outer inverse.

Given the quadratic nature of the outer inverse condition, the characterization of T_a remains clouded in general. We shall characterize T_a for several

Partially supported by FCT—‘Fundaç~ao para a Ciência e a Tecnologia’, within the project UID-MAT-00013/2013.
special types of elements, such as idempotents and units. We then use these results to nail down \(T_a \) for group invertible elements.

We shall also use the concepts of a unit-regular element \(a \), for which there is a unit \(u \) in \(R \) such that \(aua = a \), and (ii) that of a prime ring, for which \(aRb = (0) \), forces either \(a = 0 \) or \(b = 0 \). It should be noted that \(a \) is unit regular if and only if \(a = ppeq \), for some unit \(p \) and \(q \) and some idempotent \(e \).

2. Classes of outer inverses

We begin by recalling [7] that for any \(p, a \) and \(q \), and any \(\overline{(qap)} \)

\[
p(\overline{qap})q \cdot a \cdot p(\overline{qap})q = p(\overline{qap})q
\]

so that it is prudent to define, for a fixed \(p \) and \(q \),

Definition 2.1. \(S_{p,q} = \{ p(\overline{qap})q; \text{any } \overline{(qap)} \} \)

Clearly

\[
S_{p,q} = p \cdot T_{qap} \cdot q \subseteq T_a = S_{1,1}.
\]

We next turn to the set of all outer inverses of 1. It precisely equals is the set of all idempotents \(E \), since \(x \cdot 1 \cdot x = x \) if and only if \(x \) is idempotent.

Next we recall that for two units \(p \) and \(q \)

\[
T_{paq} = q^{-1}T_a p^{-1}
\]

To characterize \(T_e \) where \(e \) is idempotent, we make use of the minus order as defined in [3] for a regular element \(a \)

\[
a \leq b \text{ iff } a^{-}a = a^{-}b \text{ and } aa^{-} = ba^{-}, \text{ for some inner inverse } a^{-}.
\]

The key fact that we need is that given \(e^2 = e \) and \(g \) regular such that \(g \leq e \) then \(g^2 = g = ge = eg \). This also tells us that

Lemma 2.1. The following are equivalent, for \(e^2 = e \) and \(g \) regular:

(i) \(g \leq e \).
(ii) \(g = ge = eg = g^2 \).
(iii) \(g = eee \) for some outer inverse \(e \).
(iv) \(g = exe = g^2 \) for some \(x \).

We use this in

Theorem 2.1. If \(e \) is idempotent then \(T_e = v(x)gw(y) \), where \(v(x) = 1 + (1 - e)xe \), \(w(y) = 1 + ey(1 - e) \), \(g \leq e \), and \(x \) and \(y \) are arbitrary.

Proof. Observe that \(v(x) \) and \(w(y) \) are units for all \(x \) and \(y \) and that \(ev(x) = e = w(y)e \). As such \(v(x)gw(y) \cdot e \cdot v(x)gw(y) = vgegw = vgw \). On the other