Root closure in algebraic orders

By

MARTINE PICAVET-L’HERMITTE

Abstract. We obtain a characterization of root closed algebraic orders by means of their conductor. It provides the root closure of an algebraic order. Actually, non-integrally closed root closed orders are exceptional. In the same way, we study \(n \)-root closedness of algebraic orders, for a given integer \(n \).

1. Introduction and notation. Let \(R \) be an integral domain with quotient field \(K \) and \(n \geq 1 \) an integer. We say that:

- \(R \) is \(n \)-root closed, if whenever \(x \in K \), \(x^n \in R \), then \(x \in R \).
- \(R \) is \((A-)root closed if \(R \) is \(n \)-root closed for all integers \(n \geq 1 \) (\(n \in A \), for \(A \) a nonempty subset of \(\mathbb{N}^+ \)).
- \(R \) is seminormal if whenever \(x \in K \), \(x^2, x^3 \in R \), then \(x \in R \).
- \(R \) is t-closed if whenever \(x \in K \), \(r \in R \), \(x^2 - rx, x^3 - rx^2 \in R \), then \(x \in R \).

Of course, an integrally closed integral domain is \(n \)-root closed and t-closed, and, for each \(n \geq 2 \), an \(n \)-root closed or a t-closed integral domain is seminormal; the converses do not hold in general. Let \(R \) be a subring of a ring \(S \) and \(n \geq 1 \) an integer. In the same way, we say that \(R \) is \(n \)-root closed in \(S \) if whenever \(x \in S \), \(x^n \in R \), then \(x \in R \), and \(R \) is root closed in \(S \) if \(R \) is \(n \)-root closed in \(S \) for all integers \(n \geq 1 \). All these closedness properties commute with localization. For t-closedness, see [5] and [6].

The \(n \)-root closure (resp. root closure, seminormalization, t-closure) of an integral domain \(R \) is the smallest \(n \)-root closed (resp. root closed, seminormal, t-closed) overring of \(R \) (it exists). Similarly, we define the \(n \)-root closure, root closure, seminormalization, t-closure of \(R \) in an overring \(S \).

Let \(K \) be a number field and \(\mathcal{O}_K \) its ring of integers. A subring of \(\mathcal{O}_K \) with quotient field \(K \) is called an (algebraic) order in \(K \). A local order is the localization of an order \(R \) at a prime ideal of \(R \).

There is a lot of literature about root closure in integral domains (cf. [3], [4], [7] and the survey of D. F. Anderson [2]). Curiously, root closure in algebraic orders has not been studied in the general case, although results of G. Angermüller are not far from a characterization of root closedness.

We begin by characterizing root closed orders in Section 2. Let \(R \) be a non-integrally closed order, with integral closure \(\bar{R} \). Then, \(R \) is root closed if and only if \(R \) is seminormal.

Mathematics Subject Classification (1991): 13F45, 11R04.
and for any \(P \in \text{Max}(\bar{R}) \) containing the conductor of \(R \to \bar{R} \), the residue field \(\bar{R}/P \) has two elements. This result leads to the construction of the root closure of a non-integrally closed order. Let \(R \) be a non-integrally closed order, with integral closure \(\bar{R} \). The root closure of \(R \) is \(R + \cap P \), where \(\cap P \) is the set of all \(P \in \text{Max}(\bar{R}) \) containing the conductor of \(R \to \bar{R} \) and such that \(\bar{R}/P \) has two elements. This shows that in most cases, the root closure and integral closure coincide.

Section 3 is devoted to the study of \(n \)-root closedness, for a given integer \(n \geq 1 \). In fact, results are more involved than for root closedness and need conditions on \(t \)-closedness.

A generalization of these results can be done by considering residually finite one-dimension-
Noetherian integral domains with finite integral closure.

For a commutative ring \(R \) and an ideal \(I \) in \(R \), we denote by \(\text{V}_{\bar{R}}(I) \) the set of prime ideals in \(R \) containing \(I \). For an integral domain \(R \), we denote by \(\bar{R} \) its integral closure, by \(N(I) \) its root closure and by \(N_n(I) \) its \(n \)-root closure, for \(n \in \mathbb{N}^* \). The conductor of \(R \to \bar{R} \) is called the conductor of \(R \). If \(S \) is a finite set, the number of elements of \(S \) is denoted by \(|S| \). As usual, \(\mathbb{N}^* \) is the set of all nonzero natural numbers and \(\mathbb{F}_q \) is the finite field with \(q \) elements, \(q \) a power of a prime integer.

2. Root closure. We begin by recalling some results which will be used throughout this paper.

– [5, Proposition 4.9 and Corollaire 4.13] Let \(R \) be an algebraic order. Then \(R \) is seminormal (resp. \(t \)-closed) if and only if the conductor of \(R \) is a radical ideal in \(\bar{R} \) (resp. the conductor of \(R \) is a radical ideal in \(\bar{R} \) and the spectral map \(\text{Spec}(R) \to \text{Spec}(\bar{R}) \) is bijective).

– [3, Theorem 1.7] Let \(A \) and \(B \) be rings with a common ideal \(I \) and \(S \) a nonempty subset of \(\mathbb{N}^* \). Then \(A \) is \(S \)-root closed in \(B \) if and only if \(A/I \) is \(S \)-root closed in \(B/I \).

– [4, Theorem 1] Let \(R \) be a Noetherian domain of dimension one such that the integral closure \(S \) of \(R \) is a finite \(R \)-module and \(S/M \) is a finite field with at least 3 elements for every \(M \in \text{Max}(S) \). If \(R \) is root closed, then \(R \) is integrally closed.

In fact, this last theorem provides a characterization of root closed orders and we mimic its proof.

Theorem 2.1. Let \(R \) be a non-integrally closed algebraic order with conductor \(I \). Then \(R \) is root closed if and only if the two following conditions are satisfied.

1. \(R \) is seminormal.
2. \(|\bar{R}/P| = 2 \) for every \(P \in \text{V}_{\bar{R}}(I) \).

Proof. Let \(R \) be a non-integrally closed root closed algebraic order with conductor \(I \). Then \(R \) is seminormal and \(I \) is a radical ideal in \(R \) and \(\bar{R} \). It follows that \(I = \bigcap_{M \in \text{V}_{\bar{R}}(I)} M \).

Let \(M \in \text{V}_{\bar{R}}(I) \). Then \(MR_M \) is the conductor of \(R_M \). Moreover, \(R_M \) is root closed and non-integrally closed. Let \(P \in \text{V}_{\bar{R}}(I) \) lying over \(M \) such that \(|\bar{R}/P| > 2 \) and set \(n = |\bar{R}/P| - 1 > 1 \). Then \(\bar{R}/P \cong R_M/P_M \) is a finite field with \(n + 1 \) elements which contains a primitive \(n \)th root of unity. By [4, Main Lemma], \(R_M \) is a local ring. Thanks to [4, Theorem 1], \(R_M \) is integrally closed, a contradiction and (2) is gotten.

Now assume that conditions (1) and (2) are fulfilled. Since \(R \) is seminormal, \(I \) is a radical ideal in \(R \) and \(\bar{R} \). For \(M \in \text{V}_{\bar{R}}(I) \), denote by \(R' \) the localizations at \(M \) of \(R \) and \(M \). Then \(M' \) is