Embedding of non-commutative L^p-spaces: $p < 1$

By

F. A. Sukochev and Q. Xu

Abstract. If (\mathcal{N}, τ) is a finite von Neumann algebra and if (\mathcal{M}, ν) is an infinite von Neumann algebra, then $L_p(\mathcal{M}, \nu)$ does not Banach embed in $L_p(\mathcal{N}, \tau)$ for all $p \in (0, 1)$. We also characterize subspaces of $L_p(\mathcal{N}, \tau)$, $0 < p < 1$ containing a copy of l_p.

0. Introduction. In general, the development of (quasi) Banach space theory has clearly shown that there is no hope left for a complete structural theory of (quasi) Banach spaces, although one can still hope to have such a theory in some special cases. One such case is given by the family of non-commutative L_p-spaces associated with hyperfinite von Neumann algebras. The theory of non-commutative L_p-spaces began from the paper of von Neumann [N], where he introduced (matricial, finite dimensional) non-commutative L_p-spaces (C^n_p in the modern notation, with the index n reflecting the dimension of the matrix space) and briefly commented on the (isometric) difference between finite dimensional L_p-spaces and their matrix counterparts. Of course, the classical Banach spaces $L_p(0, 1)$ and l_p belong to this family and the relationship between these two classes of spaces is already well documented in the Banach’s book [1].

Recently, the embedding properties of non-commutative L_p-spaces have been extensively studied (cf. [3], [4, 5], [9–11] and [13,14]). In particular, it was shown in [3] and [13,14] that for any $1 \leq p < \infty$ and $p \neq 2$, the L_p-space associated with a semifinite von Neumann algebra which has a direct summand of type I_∞ (respectively, II_∞) can not be embedded into the L_p-space associated with a finite von Neumann algebra (respectively, with a semifinite von Neumann algebra without a direct summand of type II_∞). As a consequence, with the same condition on p, the Schatten class C_p (i.e. the non-commutative L_p-space associated with the von Neumann algebra of all bounded linear operators on infinite dimensional Hilbert space) is not isomorphic to a subspace of $L_p(\mathcal{N})$ for any finite von Neumann algebra \mathcal{N}. These results play an important rôle in the Banach-isomorphic classification of the non-commutative L_p-spaces associated with hyperfinite and semifinite von Neumann algebras in [14] and [3]. The paper [3] also contains many related results of general interest, in particular

Mathematics Subject Classification (2000): 46B20.

1) Research supported by the Australian Research Council
it presented a description of subspaces of non-commutative L_p-spaces containing a copy of the space l_p. This note deals with these properties in the case of $0 < p < 1$. We will show that the results asserting non-embedding for various pairs of non-commutative L_p-spaces, $1 \leq p < 2$ from [3] can be extended to the case $0 < p < 1$. Although our arguments depend very much on those from [3], we provide significant simplifications and additional insights into the arguments which seem essential for the case $0 < p < 1$.

Throughout this note we will use the same terminology and notation as in [3]. In the sequel, \mathcal{N} will always denote a von Neumann algebra equipped with a normal faithful normalized atomless trace τ. The assumption that τ is atomless causes no loss of generality (cf. [3], Section 2) and all non-embedding results presented in this note hold also without this assumption. By $L_p(\mathcal{N}, \tau)$, or simply, $L_p(\tau)$ we denote the associated non-commutative L_p-space (see e.g. [2]). Let $x \in L_p(\tau)$ and $\delta > 0$. We recall that the p-modulus of x is

$$\omega_p(x, \delta) = \sup \{ \|xe\|_p : e \in \mathcal{P}(\mathcal{N}), \tau(e) \leq \delta \},$$

where $\mathcal{P}(\mathcal{N})$ denotes the lattice of the projections of \mathcal{N}. For simplicity, we refer to number $\omega(x, \delta) = \omega_1(x, \delta)$ as the modulus of x. Note that (cf. [3])

$$\omega_p(x, \delta) = \omega_p(x^*, \delta) = \omega_p(|x|, \delta) = (\omega(|x|^p, \delta))^{\frac{1}{p}} = \left(\int_0^\delta \mu_t(x)^p dt \right)^{\frac{1}{p}},$$

where, as usual, $t \mapsto \mu_t(x)$ stands for the generalized singular number function of x. A subset $K \subset L_p(\tau)$ is said to be uniformly p-integrable if

$$\lim_{\delta \to 0} \sup_{x \in K} \omega_p(x, \delta) = 0.$$

1. An embedding result. The following is the extension to the case $0 < p < 1$ of the main Theorem 4.2 in [3]. Let $(x_{ij})_{i,j \geq 1} \subset L_p(\tau)$ be a bounded matrix (i.e. $\sup_{i,j} \|x_{ij}\|_p < \infty$). Recall that a generalized diagonal of $(x_{ij})_{i,j \geq 1}$ is a sequence $(x_n)_{n \geq 1} = (x_{i_n,j_n})_{n \geq 1}$ with $i_1 < i_2 < \ldots$ and $j_1 < j_2 < \ldots$.

Theorem 1.1. Let $0 < p < 1$. Let $(x_{ij})_{i,j \geq 1} \subset L_p(\tau)$ be a bounded matrix. Suppose that every generalized diagonal of (x_{ij}) is unconditional. Then one of the following three alternatives holds:

1. Some row or column contains a subsequence equivalent to the canonical basis of l_p.
2. There is a constant $\lambda > 0$ such that for all n some row and some column contain finite subsequences λ-equivalent to the canonical basis of l_p^n.
3. There is a generalized diagonal $(x_n)_{n \geq 1}$ such that for every subsequence $(y_n)_{n \geq 1}$ of $(x_n)_{n \geq 1}$

$$\lim_{n \to \infty} \frac{1}{n^{1/p}} \left\| \sum_{k=1}^n y_k \right\|_p = 0.$$