Frobenius \mathbb{Q}-groups

By

M. R. Darafsheh and H. Sharifi

Abstract. A finite group whose irreducible complex characters are rational is called a \mathbb{Q}-group. In this paper we will find the structure of Frobenius \mathbb{Q}-groups.

1. Introduction. Let G be a finite group and χ a complex character of G. The field generated by all $\chi(x)$, $x \in G$, is denoted by $\mathbb{Q}(\chi)$. By definition a complex character χ is called rational if $\mathbb{Q}(\chi) = \mathbb{Q}$, and a finite group G is called a rational group or a \mathbb{Q}-group if every irreducible complex character is rational. Examples of \mathbb{Q}-groups are the symmetric group S_n and the Weyl groups of the complex Lie algebras, see [2]. Finite \mathbb{Q}-groups have been studied by some mathematicians and there are some unsolved problems about them. It is shown in [4] that if G is a solvable \mathbb{Q}-group, then $\pi(G) \subseteq \{2, 3, 5\}$ where $\pi(G)$ denotes the set of prime divisors of $|G|$. Also in [3] it is proved that the only non-Abelian simple \mathbb{Q}-groups are the groups $SP_6(2)$ and $O^+_8(2)$. But classifying finite \mathbb{Q}-groups still remains an open research problem. In the book [6] several open problems have been raised concerning \mathbb{Q}-groups. In this note we will find the structure of Frobenius \mathbb{Q}-groups. In this paper all groups are finite and all characters are complex. The semi-direct product of groups H and K is denoted by $H \rtimes K$, and a cyclic group of order n by \mathbb{Z}_n. Also, if p is a prime number, $E(p^n)$ denotes the elementary Abelian p-group of order p^n. Finally, we write Q_8 for the quaternion group of order 8.

Before stating our main theorem, we will mention some well-known results about \mathbb{Q}-groups. An alternative characterization of \mathbb{Q}-groups is the following result which can be found in [5, p. 537, Satz 13.7].

Result 1. A group G is a \mathbb{Q}-group if and only if for every $x \in G$ of order n the elements x and x^m are conjugate in G, whenever $(m, n) = 1$. Equivalently, for each $x \in G$ we must have $N_G(\langle x \rangle)/C_G(\langle x \rangle) \cong \text{Aut}(\langle x \rangle)$.

Result 2. Quotients and direct products of \mathbb{Q}-groups are \mathbb{Q}-groups.

Mathematics Subject Classification (2000): 20C15.
Our main result is the following.

Main Theorem. If \(G \) is a Frobenius \(\mathbb{Q} \)-group, then exactly one of the following occurs:

1. We have \(G \cong E(3^n) : \mathbb{Z}_2 \), where \(n \geq 1 \) and \(\mathbb{Z}_2 \) acts on \(E(3^n) \) by inverting every non-identity element.
2. \(G \cong E(3^{2m}) : Q_8 \), where \(m \geq 1 \) and \(E(3^{2m}) \) is a direct sum of \(m \) copies of the 2-dimensional irreducible representation of \(Q_8 \) over the field with 3 elements.
3. \(G \cong E(5^2) : Q_8 \), where \(E(5^2) \) is the 2-dimensional irreducible representation of \(Q_8 \) over the field with 5 elements.

2. Frobenius \(\mathbb{Q} \)-groups. By definition a Frobenius group is a group \(G \) with a subgroup \(H \) such that \(1 \neq H < G \) and \(H \cap H^x = 1 \) for all \(x \in G - H \). The subgroup \(H \) is called Frobenius complement and it is well-known that \(G \) has a normal subgroup \(K \), called Frobenius kernel, such that \(G = HK \), \(H \cap K = 1 \). To see this result and related results concerning Frobenius groups we refer the reader to [8]. In [1, p. 62] it is proved that solvable non-nilpotent \(\mathbb{Q} \)-groups with Sylow 2-subgroups isomorphic to the quaternion group of order 8 are Frobenius groups. This is a motivation for us to classify Frobenius \(\mathbb{Q} \)-group.

Lemma. Let \(G \) be a Frobenius group with complement \(H \). If \(G \) is a \(\mathbb{Q} \)-group, then \(H \cong \mathbb{Z}_2 \) or \(Q_8 \).

Proof. Let \(G \) be a Frobenius \(\mathbb{Q} \)-group with complement \(H \) and kernel \(K \). Then by Result 2, \(G/K \cong H \) is also a \(\mathbb{Q} \)-group. Since \(H \neq 1 \) and for any non-identity element \(x \) in \(H \) the elements \(x \) and \(x^{-1} \) are conjugate in \(H \), we have \(2 \mid |H| \). We consider two cases.

Case (i) \(H \) is a non-solvable group.

Then by a result of Zassenhaus quoted in [8, p. 204], the group \(G \) has a normal subgroup \(G_0 \) with \([G : G_0] \leq 2 \) such that \(G_0 \cong SL_2(5) \times M \) where \(M \) is a group of order prime to 2, 3 and 5. By [2] the group \(SL_2(5) \) is not a \(\mathbb{Q} \)-group, neither is any extension of \(SL_2(5) \) by an automorphism of order 2. Therefore this case does not lead to a \(\mathbb{Q} \)-group.

Case (ii). \(H \) is a solvable group.

Since \(H \) is a \(\mathbb{Q} \)-group by [4] we must have \(\pi(H) \subseteq \{2, 3, 5\} \), where \(\pi(H) \) denotes the set of prime divisors of \(|H| \). Since \(2 \mid |H| \), hence by [8, p. 194], the Sylow 2-subgroups of \(H \) are either cyclic or generalized quaternion groups.

First assume that a Sylow 2-subgroup \(P \) of \(H \) is a generalized quaternion group. Then

\[
P = \langle x, y \mid x^{2^n} = 1, y^2 = x^{2^{n-1}}, y^{-1}xy = x^{-1} \rangle.
\]