A note on the p-local rank

By

BAOSHAN WANG

Abstract. In this paper, we give an inductive definition of p-local rank of a p-block in a finite group G with $p | |G|$ and show a necessary and sufficient condition for a p-block B such that $p lr(B) = 2$.

1. Introduction. Let G be a finite group and p a prime divisor of $|G|$. Given a chain of p-subgroups

$$\sigma : Q_0 < Q_1 < \ldots < Q_n$$

of G, define the length $|\sigma| = n$, the final subgroup $V^{\sigma} = Q_n$, the initial subgroup $V_{\sigma} = Q_0$, the k-th initial sub-chain

$$\sigma_k : Q_0 < Q_1 < \ldots < Q_k,$$

and the normalizer

$$N_G(\sigma) := G_{\sigma} := N_G(Q_0) \cap N_G(Q_1) \cap \ldots \cap N_G(Q_n).$$

Write $\mathcal{C}(G|Q)$ for the set of those chains with initial subgroup Q and $\text{Bl}(G)$ for the set of all p-blocks of G.

Briefly, we say that a p-subgroup Q of G is radical if $Q = O_p(N_G(Q))$, where $O_p(H)$ is the unique maximal normal p-subgroup of H. We say that the p-chain σ is radical if $Q_i = O_p(N_G(\sigma_i))$ for each i, i.e., if Q_0 is a radical p-subgroup of G and Q_i is a radical p-subgroup of $N_G(\sigma_{i-1})$ for each $i \neq 0$. Write $\mathcal{R} = \mathcal{R}(G)$ for the set of radical p-chains of G and write $\mathcal{R}(G|Q) = \{\sigma \in \mathcal{R}(G) : V_{\sigma} = Q\}$. Write $\mathcal{R}(G|Q)/G$ for a set of orbit representatives under the action of G. Following [6], the p-local rank $\text{plr}(G)$ of G is the length of a longest chain in $\mathcal{R}(G)$. We say that a subgroup H of G is a trivial intersection (T. I.), if $H^g \cap H = 1$ for every $g \in G \setminus N_G(H)$. By [6, 7.1], if $\text{plr}(G) > 0$, then $\text{plr}(G) = 1$ if and only if $G/O_p(G)$ has T. I. Sylow p-subgroups.

Mathematics Subject Classification (2000): 20C20.
The p-local rank is first defined in [6]. For convenience, we restate the original definition below.

Let G be a finite group with $O_p(G) = 1$. Let P be a subgroup of G with $O_p(P) \neq 1$. We say that P is a level 1 p-parabolic subgroup of G if $P = N_G(O_p(P))$. We adjoin other parabolic subgroups of other levels as follows: if Q is a parabolic subgroup of level i and \overline{X} is a level 1 p-parabolic subgroup of $Q = Q/O_p(Q)$, we call X, the full pre-image of \overline{X} in Q, a level $(i + 1)$ p-parabolic subgroup of G.

We define the p-local rank ($p\text{lr}$) of finite group H inductively as follows:

1. if H is a p'-group, then $p\text{lr}(H) = 0$;
2. if $O_p(H) \neq 1$, then $p\text{lr}(H)$ is by definition equal to $p\text{lr}(H/O_p(H))$;
3. if $O_p(H) = 1$, but H is not a p'-group, then $p\text{lr}(H)$ is by definition equal to $1 + \max\{p\text{lr}(P) \mid P$ is a level 1-parabolic subgroup of $H\}$.

Now, let (K, R, k) be a p-modular system which splits for G, and consider a p-block B of G with defect group $\delta(B)$. Given a subgroup H of G, write $\text{Bl}(H|B) = \{b \in \text{Bl}(H) \mid b^G = B\}$ (in the sense of Brauer).

The Knörr-Robinson reformulation of Alperin’s weight conjecture (see [5] and [1]) states that if B has positive defect then $\sum_{\sigma \in \mathcal{C}(G|1)} (-1)^{|\sigma|}l(G_\sigma, B) = 0$, where $l(G_\sigma, B)$ denotes the number of simple kG_σ-modules belonging to p-blocks of G_σ whose Brauer correspondent is B. It is clear that if $l(G_\sigma, B) \neq 0$ then there is some p-block b of G_σ with $b^G = B$.

It thus makes sense to consider the set

$$\mathcal{C}(G, B) = \{\sigma \in \mathcal{C}(G) \mid \text{Bl}(G_\sigma|B) \neq \emptyset\}.$$

We say that σ is a p-chain for B, or a B-chain (as we will see we may associate with σ a chain of B-subgroups in the sense of Alperin [2]) if $\sigma \in \mathcal{C}(G, B)$.

We write

$$\mathcal{R}(G, B) = \{\sigma \in \mathcal{R}(G) \mid \text{Bl}(N_G(\sigma)|B) \neq \emptyset\}.$$

As in [3], we define the p-local rank $p\text{lr}(B)$ of B to be the number

$$p\text{lr}(B) = \max\{|\sigma| \mid \sigma \in \mathcal{R}(G, B)\}.$$

Clearly, $p\text{lr}(G) \geq p\text{lr}(B)$ for all $B \in \text{Bl}(G)$. As shown in [3], we have that for the principal block B_0 of G, $p\text{lr}(B_0) = p\text{lr}(G)$ follows Brauer’s Third Main Theorem.

The paper is organized as follows. In Section 2 we consider our definitions in terms of subpairs. In Section 3, we give some notations and some lemmas. In the last section, we will prove our main results.

2. **Subpairs.** A pair (Q, b) is called a *Brauer pair*, if Q is a p-subgroup of G and b a block of $QC_G(Q)$ with defect group Q. Generally, if Q is a p-subgroup of G and b_Q is a block of $QC_G(Q)$ then the pair (Q, b_Q) is called a *subpair* (for “subgroup block pair”) of G. There we make no restriction on the defect groups of b_Q. Each subpair corresponds